基于人工神经网络的中医证候非线性建模研究论文

基于人工神经网络的中医证候非线性建模研究论文

ID:10765449

大小:52.00 KB

页数:4页

时间:2018-07-08

基于人工神经网络的中医证候非线性建模研究论文_第1页
基于人工神经网络的中医证候非线性建模研究论文_第2页
基于人工神经网络的中医证候非线性建模研究论文_第3页
基于人工神经网络的中医证候非线性建模研究论文_第4页
资源描述:

《基于人工神经网络的中医证候非线性建模研究论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、基于人工神经网络的中医证候非线性建模研究论文.freeloid型可微函数,可以实现输入到输出间的任意非线性映射,这使得它在函数逼近、模式识别、数据压缩等领域有着广泛的应用,也使得它能够应用于中医证候的非线性建模。3.2非线性建模方法证候具有典型的非线性特征,证候的诊断过程可以看作是一个从诊断指标到证候的非线性映射过程,这个过程用非线性数学模型可以充分模拟,而ANN是典型的非线性数学模型,其中的BP网络更具有强大的非线性拟合能力。因此,我们选择ANN中最常用的BP神经网络技术,并进行适当的改进后,建立中医证候的非线性模型,然后对建立的证候模型的诊断性能进行测试。具体步骤如下。3.2.1

2、数据预处理在建模之前,首先对试验数据进行预处理。包括对输入数据的归一化处理和对数据的主成分分析以及资料的分组处理等。先对所有数据进行归一化处理,使变换后的输入输出信息在(0,1)区间,以防止小数值信息被大数值信息所淹没;然后对归一化处理后的数据进行主成分分析,主成分的选择标准定为95%。数据经过主成分分析,可对大量的输入信息进行降维处理;最后根据验证方法进行病例分组,我们采用3倍交叉验证法,因此,将样本随机分为3组。3.2.2确定BP网络的结构在MATLAB7.0环境下,采用改进的共轭梯度学习算法(trainscg学习算法),建立证候的三层前向BP网络模型。该网络包括输入层、隐层和输

3、出层,其中输入层包含的输入神经元数即是证候的诊断指标数;隐层的层数及每层包含的神经元数根据具体情况而定;输出层包含的输出神经元数即研究资料包含的基本证型数。两个隐层之间通过双曲线正切S型传递函数(tansig)连接,隐层与输出层之间用对数S型传递函数(logsig)连接。设定网络的系统误差为小于0.01,最大迭代次数为500次,最小下降梯度为10-10。其中,网络的输出节点用来表示共几种证型,表示方法是一个输出节点对应一种证型。我们将包含n个证型的输出采用(0,1,…,0)的方式,括号内共有n个数值,每一个数值代表一种证型,其中0表示诊断不成立,1表示诊断成立,这样可以诊断兼夹证的情

4、况。另外,预测输出值分原始输出值和整合输出值两组,原始输出值为0到1之间的连续值;整合输出值既可整理成(0,1)的形式(规定≥0.5为1),又可整理成0-1之间的分段数值,比如(0,0.2,0.4,0.6,0.8,1)等6个数值,这样根据数值大小既可诊断兼夹证,又可判断证型的主、次情况。3.2.3证候网络模型的训练先取样本的两组作为训练集,另一组作为测试集,再交换其中的一组,如此循环,分别共做3次训练与测试,从中得出平均预测效果值。网络参数的初始值取为-0.5,+0.5上均匀分布的随机数。经重置几次网络权值的学习率和动态训练集后,不断改善权值。到权值趋稳,即认为网络训练完成。3.2.

5、4证候网络模型的测试神经网络训练的期望目标是以尽可能简单的网络结构达到尽可能高的学习精度和尽可能好的泛化能力,因此考察神经网络的性能就要看网络的泛化能力。所谓泛化,就是网络对尚未学习过的数据的正确识别能力,是否具有良好的泛化能力是网络能否投入实际使用及使用效果如何的重要因素。它可以通过测试样本集网络诊断结果的特异性和准确率来衡量。证候网络模型的权值趋稳,训练结束后,即可以采用三倍交叉验证的方法,分3次分别对1/3测试样本做检验。此时只有输入矢量(即只有症状得分),无输出期望值(即没有相应证型的判断)。经网络运算后,得出预测输出值,与期望输出进行比较,分别统计各种证型预测值的特异性和准

6、确率,以判断该证候神经网络模型的诊断性能。4实现基于人工神经网络的非线性证候建模研究我们采用上述非线性证候建模方法,在MATLAB7.0环境下,对一组765例类风湿性关节炎(rheumatoidarthritis,RA)临床证候资料和一组449例糖尿病肾病(diabeticnephropathy,DN)临床证候资料,分别建立了RA证候BP网络模型和DN证候BP网络模型,并均采用三倍交叉验证的方法,检验了证候神经网络模型的诊断性能(具体内容另文详述)。测试结果显示:两种模型的平均单证特异性分别为81.31%、81.32%;平均单证准确率分别为95.70%、96.25%;平均诊断准确率分

7、别为90.72%、92.21%。说明基于改进的BP神经网络的证候模型具有较高的诊断、预测能力。5讨论“线性”和“非线性”是区别事物复杂性程度的标尺,在数学中,当两个变量(自变量和应变量)的关系成正比时就称为线性关系,否则就是非线性关系4。在生命科学中,由上述概念推广而来的线性和非线性逻辑则更具实用意义,非线性逻辑表征事物各组分之间是相互作用的,而不是相互独立的、正则的、无限可微的和平滑的,即总体不等于部分之和,它是复杂系统的典型特征之一。证候是机体各层级结

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。