“动中求定”的八大策略——探索解析几何中求解定点、定值、定向、定线等问题的策略

“动中求定”的八大策略——探索解析几何中求解定点、定值、定向、定线等问题的策略

ID:10643485

大小:28.00 KB

页数:11页

时间:2018-07-07

“动中求定”的八大策略——探索解析几何中求解定点、定值、定向、定线等问题的策略_第1页
“动中求定”的八大策略——探索解析几何中求解定点、定值、定向、定线等问题的策略_第2页
“动中求定”的八大策略——探索解析几何中求解定点、定值、定向、定线等问题的策略_第3页
“动中求定”的八大策略——探索解析几何中求解定点、定值、定向、定线等问题的策略_第4页
“动中求定”的八大策略——探索解析几何中求解定点、定值、定向、定线等问题的策略_第5页
资源描述:

《“动中求定”的八大策略——探索解析几何中求解定点、定值、定向、定线等问题的策略》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、“动中求定”的八大策略——探索解析几何中求解定点、定值、定向、定线等问题的策略注意到A∈[÷,2],可得所求为[2,÷].JJ点评:求参数的取值范围,一直是数学中的经典问题.解题的关键是如何构造出关于参数的表达式或不等式,转化为求函数的值域或解不等式问题.本例是直接利用题设的A的范围,求出值域,属简单题.而一些较复杂的题,往往要用以下一些条件和方法:圆锥曲线的范围,几何图形的性质,变量的取值范围(如sinO,cosO●徐素琴舒林军''的范围),判别式法,基本不等式法,分离参数法等.以上五类问题是解析几何中的重点题型,一定要掌握求解的通法,在解题实践中不断对各种解

2、法加以比较,总结,提高自己择优解题的能力,使解析几何解答题成为你的得分点,从而在高考中获得数学卷的高分0-动中求定"的八大策略探索解析几何中求解定点,定值,定向,定线等问题的策略在解析几何中常常出现求定点,定值,定向,定线等问题,它已经成为当前各省高考试题中的热点.本文对此类问题加以探究,得出一些行之有效的方法策略,供以参考.策略一:提取参数对于某些含参数的曲线方程,如果可以把参数与x,y分离,则提出参数后,再根据恒等式的性质,即可以解得x,y的值,得到定点的坐标.例?1已知动直线(2+k)x一(1+k)一2(3+2k)=0,求证:点P(一2,2)到该动直线的距

3、离d≤4.证明:把直线方程化为.i}(一),一4)+(2x—Y一6)=0,知J.一),一4=o,L2x一),一6=0.解得=2,Y=一2,即动直线过定点(2,一2).连,则点P(一2,2)到该动直线的距离d≤lPI=~/(一2—2)+(2+2)=4.'策略二:观察巧代?2O?充分利用已知式的结构特征,经过观察分析,只要找出满足条件的,y的值,就是定点的坐标.例2(1)已知实数17/.,n满足三+=l,则动直线羔+上:l必过定点的坐标为——;(2)已知实数p,g满足p+2q—l=0,则动直线+3y+q=0恒过定点M的坐标为略解:(1)只要令=2,,,=l,即得定点

4、(2,1);(2)已知式化为号一下1+q=0,只要令=寺一IM(1,一吉).策略三:设参分离根据题意,设立参数,建立方程,分离参数,即可以求得定点.例3已知抛物线C:y=8x,焦点为F,定点P(2,4),动点A,B是抛物线C上的两个点,且满足后?keB=8,试问AB所在的直线是否过定点,若是,求出该定点的坐标;否则说明理由.解:设A(8t;,8t1),B(8t,8t2)(t1≠t2),则】.1PA,kpB'fl+一2f2+一2因为J}?后雎=8,所以8t1t2=一1—4(tl+t2).①因为Ij}仙,所以A曰的方程:),一8tt:(一8£;)?再利用①化简即得(

5、一1)一(t1+t2)(),+4)=0.可见直线AB过定点(1,一4).策略四:巧"特"结论有两种情形:一种利用特殊值探求结论,再验证其充分性;另一种是也先用特殊值探求结论,后作一般性探求...2.2.例4已知椭圆等+=1,过左焦点作不垂直于轴的弦交椭圆于A,两点,AB的垂直平分线交轴于点,则IFI:IABl的值为()(A1(B1(c了2(D)}解:本题为选择题,即知此比值为定值,故可用特殊值法.设AB与轴重合时,就是原点,则AB长为6,MF的长为2,故IMFl:IABI=1,答案为(B).如果不用特殊法解,本题就是一个较难的解答题,同学们不妨一试.若用极坐标方

6、程解较方便一些.可见在解选择题时,用特殊值法来判断和寻找答案尤为重要.2例5已知椭圆方程+=1,过点s(o,一÷)的动直线f交该椭圆于A,B两点,试问:在坐标平面内是否存在一个定点,使得以AB为直径的圆恒过定点,若存在求出T的坐标;若不存在,请说明理由.解:假设满足条件的定点存在.当直线Z与轴平行时,以AB为直径的圆方程为2+-y')=;当直线Z与),轴重合时,以AB为直径的圆方程为+),=1.以上两圆方程联立解得』=o,即r(0,1)ty=1,是满足条件的必要条件.下面证明其充分性:若存在v(o,1),对过点S不与坐标轴平行的直线设为y=kx一÷(Il}≠0)

7、,把它代人椭圆方程得到(1+2)2一一=o.设A(,y.),B(,y),则有『+=吾_,116【la;:一'因为H=(l,y1—1),TB=(2,y2一1),7?TB=X12+(),1—1)(,,2—1)=(1):一争(+一16(1+)4,12k16——18k9一一一3—}8k9+一9++=0.所以上船,即以AB为直径的圆恒过定点其定点的坐标为(O,1).例6已知椭圆+:1(n>b>o)上任意一点,B,B:是椭圆短轴的两个端点,作直线MB1,MB2分别交轴于P,()两点,求证:lOP1.IDQI为定值,并求出定值.分析:当动点在长轴的端点时,则P,Q

8、重合于长轴的端点,因此I

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。