资源描述:
《基于预测利率期限结构变动的债券投资策略实证研究的论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、基于预测利率期限结构变动的债券投资策略实证研究的论文一、引言 积极的债券管理中有两个潜在的价值来源。第一个来源是预测技术,它试图通过建立一系列的模型来预测市场未来的各种变动。通过预测市场未来的状况,管理者能够发现相对有投资价值的债券或者对利率风险进行规避,从而获得超额收益。第二个潜在的价值来源就是债券市场内相关的价格失衡情况的确定。这两个价值来源对于债券投资而言都十分重要。但预测技术是进行资产配置的首要前提,也是国外学者研究最多的领域。
2、 本文将集中研究基于期限结构预测的积极债券投资策略,并将通过交易所国债的交易数据对这些策略在 (二)拟合结果 在了解nelsen-siegel模型之后,就可以利用该模型来拟合期限结构。但是在拟合的过程中,有几个要点是需要考虑的,现分析如下: 1.样本数据。本文的目的是要预测利率期限结构的变动,而最能代表国内债券市场利率期限结构的是国债的收益率曲线。因此本文将利用交易所国债数据来拟合利率期限结构。为了能反映每个期限段的收益率情况,在拟合过程中,需要各期限债券的分布比较均匀(特别是需
3、要有短期债券和长期债券),否则所拟合出来的曲线可能不合理。但是在2004年以前,在交易所市场上市的短期国债很少,影响期限结构的拟合。考虑到这一点,本文从2004年3月24日(1年期短期债04国债01上市)开始拟合期限结构,直到2005年3月11日(1年期短期债04国债01退市),约1年的数据。 2.样本数据处理。在拟合期限结构的过程中,采用了交易所国债每天的成交价格。而成交价格的合理性对于拟合期限结构本身是至关重要的。不合理的价格会导致不合理的收益率,从而对
4、拟合的收益率曲线产生扭曲形变。剔除两类债券:一是人为炒作债券;二是一些税收和法律上的原因导致某些债券收益率相对偏高或偏低的债券。 3.对模型参数的约束。从理论上来说,为了使得模型的拟合程度尽可能高,就不应该对参数作任何的约束。但如果不对参数作任何的约束,那么参数的连续性和稳定性可能得不到保证(见diehold和canlinli,2002)。因为本文的首要目的不是拟合最优的收益率曲线,而是通过模型参数的变化来预测收益率曲线,因此,如何保证所模型参数的稳定性和连续性是更为关
5、键的任务。这样,需要对模型参数进行一定的约束。本文的研究中,将固定参数τ1的值,再对其余3个参数进行估计。研究表明,3年期是收益率曲线变动最为敏感期限,也即凸度变动最大的点。因此,本文将参数τ1固定在3。 根据上面提到的样本数据和拟合技术,本文拟合了每一天的利率期限结构,并保留了每天的参数值。表3统计了各个参数的相关关系和标准差。其中β0和β1呈现较强的负相关性,说明当长期利率水平升高时,收益率曲线的斜率增大(陡峭化);当长期利率水平降低时,
6、收益率曲线的斜率减小(平坦化)。这与frank.jones(1991)的研究结论是相反的。而β2和β0、β1之间的相关性较弱,说明凸度变动是一个相对独立的变量。反映长期利率水平的参数β0的波动率较小,而反映凸度变化的参数β2的波动较为剧烈,并带有均值回复的性质,这一点与phoa(1997)的研究结论一致。而斜率参数β1的波动介于这两者之间。 表2各期限收益率差的相关关系 对这3个参数与实际的长债收益率、长短期收益率差以及3年期债券凸度的
7、相关性检验得出结论:参数β0与20年期国债收益率的相关系数达到0.71,参数β0与20-1序列(20年期国债与1年期国债收益率差,反映收益率曲线的斜率)的相关系数为-0.58,而参数β2与2-3-5序列(3年期国债相对于2年期和5年期国债的凸度,即3年期收益率-(2年期收益率+5年期收益率)?蛐2,用于反映收益率曲线的凸度)的相关系数为0.61。这说明三个参数都很好的反映了期限结构的变动。 在拟合出模型的参数之后,就可以验证这些参数对未来利率期限结构变动的预测能力。前文提到,对于利率水平整体升降的
8、预测,可以用长期债券的超额回报率的预测来代替。而收益率曲线的斜率变动与水平变动之间有较强的相关关系,从而对收益率曲线的斜率变动也可以间接预测。而凸度的