欢迎来到天天文库
浏览记录
ID:10290530
大小:53.50 KB
页数:4页
时间:2018-07-06
《数学教学中如何培养学生的创新思维 》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、数学教学中如何培养学生的创新思维[摘要]创新能力,是指人在顺利完成以原有知识、经验为基础的创建新事物的活动过程中表现出来的潜在的心理品质。而创新能力的作用就是教人如何进行创新实践,如何解决遇到的各种现实问题。 [关键词]创新思维创新意识个性品质数学思维能力创新人才 创新思维的培养不仅是学数学的需要,更是时代的要求。作者根据自己多年的教学实践,就在教学中如何培养学生的创新思维作出了阐释。 一、深化理性思维,改善思维品质,培养创新意识 兴趣是培养学生创新意识的前提,是构成创新动机最现实、最活泼的心理成份,是创新的动力源
2、泉。教学中应充分利用教材,恰当的引导,适时的启发,激发不同层次学生的学习动力、兴趣,调整学生学习心理的转变,有意识的培养学生有效的思维意识和思维习惯。 1.培养学生观察问题,发现问题,解决问题的思维习惯,激发创新意识 人们发现新问题的能力是与大脑的积极思维分不开的,培养学生发现问题的能力是培养创新意识的前提。数学知识的获得,主要是通过对实物和模型的观察和思考,抽象概括出它们的本质属性,并用自己的语言给出定义或命题;让学生发现数学问题的解决过程,体验思维的形成过程。 例如,将边长为3的正方体的六个面涂上颜色,而后分割成大小均匀的边
3、长为1的正方体,则所得小正方体中只有一个面有颜色的概率是(B)。 A.827B.29C.127D.49 分析:“将边长为3的正方体的六个面涂上颜色,而后分割成大小均匀的边长为1的正方体”在生活中的实物模型—魔方: 所得小正方体中,①三个面有颜色的是位于原正方体八个顶点的八个小正方体; ②二个面有颜色的是位于原正方体十二条棱中间的十二个小正方体; ③一个面有颜色的是位于原正方体六个面正中间的六个小正方体; ④没有面有颜色的是位于原正方体正中心的一个小正方体。 【评述】培养学生发现问题的能力,着重是培养学生数学地提出问题的能
4、力,以及分析问题,解决问题的能力及过程。上述解决问题的过程是:数学问题情景—实物(或模型)—特征分析—归类整理—数学计算—结论。不但起到了巩固固有的思维结构与形式,而且收到了发散结论的思维效果。 2.培养学生的质疑能力,促进创新意识的萌动 创新思维是从发现问题开始的,“学起于思,思源于疑”。疑,是点燃学生思维的火种,有疑问才会去探索。如果对某些地方大胆质疑,便可促其深思,以求悟解。在数学教学中,要鼓励学生质疑,问难,敢于思考、猜测,敢于超越常规;鼓励学生善于生疑,反思。学生质疑越多,求知欲越旺,兴趣会越浓,这样学生的创新意识、创新
5、思维、创新精神就会在质疑、解疑中得到培养和提高。 例如,异面直线间的距离的求法—线面间的距离,这一转化一旦直接提出学生是很难接受的,在其思维活动中必然产生疑虑,促使其利用现有知识去佐证:异面直线的公垂线的找法,从而整理如下材料。 ①a,b为异面直线,过直线b上一点B有且只有一条直线c与a平行;-a‖c; ②过两条相交直线b,c有且只有一个平面α-a‖α; ③过直线a上一点A有且只有一条直线d与平面α垂直于C;-d⊥α即-AC⊥α; ④直线a∩直线d=A,过b,c有且只有一个平面β,使得β⊥α于直线e;-β⊥α; ⑤a‖α,
6、a∩β,α∩β=e,则a‖e,又由a‖c知e‖c; ⑥在平面α中,e‖c,b∩c=B则b∩e=D; ⑦在平面β中,a‖e,过D有且只有一条直线f与d平行且f⊥a于E即DE‖AC且DE=AC; ⑧DE⊥a与E,DE⊥b与D则DE即为直线a,b的公垂线段亦即异面直线a,b间的距离。 结论:异面直线a,b间的距离即为直线a到平面α的距离AC。 【评述】在疑问中探索,不仅能加强思维的形成过程,而且能拓展思维的广度,深度,促进创新意识的原始萌动。 3.加强学生个性品质的养成,增强创新意识 个性品质是指学生具有一定的数学视野及数学意
7、识,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义。在课堂上要培养学生创造性的心理素质,就必须尊重学生个性,努力创造一个让学生积极主动参与的教学活动,并敢于发表自己见解的民主氛围,让不同层次的学生获得不同程度的成功。在教学中要充分发挥学生的自主性和创造性,善于适时利用课堂中的每次“意外”,引导学生,鼓励学生即兴创造,超越预设的教学目标。 二、培养学生的数学思维能力,提高探究能力,发展学生的创新意识和实践能力 数学教学中注重培养学生数学地提出问题,分析问题和解决问题的能力,发展学生的
8、创新意识和实践能力,提高学生数学探究能力,数学建模能力和数学交流能力。努力培养学生的数学思维能力。 1.“纵横联系”形成类比,培养学生思维的连续性,拓展性,发展学生的创新意识 类比,是一种思维跳跃,借助于类比,可以发
此文档下载收益归作者所有