欢迎来到天天文库
浏览记录
ID:10140054
大小:184.94 KB
页数:4页
时间:2018-06-11
《高考数学20分钟专题突破26》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、本资料来源于《七彩教育网》http://www.7caiedu.cn数学20分钟专题突破26分类整合的思想方法一.选择题1.至少有一个正的实根的充要条件是()A.B.C.D.二.填空题1.设函数,若对于任意的都有成立,则实数的值为2.函数在上有最大值,则实数的取值范围为三.解答题1.设且,比较与的大小.(20南通四县市)先后2次抛掷一枚骰子,将得到的点数分别记为.(1)求直线与圆相切的概率;(2)将,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.答案:一.选择题1.解:当时,方程为,满足。当时,至少有一个正的实根,设,当时,∵,∴一定有一个正的实根
2、;当时,∵,∴即,综上,故选B二.填空题1.解:若,则不论取何值,≥0显然成立;当即时,≥0可化为:设,则,所以在区间上单调递增,在区间上单调递减,因此,从而≥4;当x<0即时,≥0可化为,在区间上单调递增,因此,从而≤4,综上=4答案:42.解法一、当时,在上为单调增函数,最大值为,满足题意。当时,函数,其对称轴为当时,在上为单调增函数,最大值为,满足题意。当时,当即时,在上为单调增函数,最大值为,满足题意。综上:当时,函数在上有最大值。解法二、由得,要使函数在上有最大值,需使在上为单调增函数,由,当时成立,当,得,因为在上的最大值为,所以。综上:当时,函数在上有
3、最大值。答案:三.解答题1.解:-()=,当且时,∵,∴.当时,∵,∴=.当时,∵,∴。2.解:(1)先后2次抛掷一枚骰子,将得到的点数分别记为,事件总数为6×6=36.∵直线与圆相切的充要条件是即:,由于∴满足条件的情况只有;或两种情况.∴直线与圆相切的概率是(2)先后2次抛掷一枚骰子,将得到的点数分别记为,事件总数为6×6=36.∵三角形的一边长为5∴当时,1种当时,1种当时,2种当时,2种当时,6种当a=6时,2种故满足条件的不同情况共有14种答:三条线段能围成不同的等腰三角形的概率为.本资料由《七彩教育网》www.7caiedu.cn提供!
此文档下载收益归作者所有