欢迎来到天天文库
浏览记录
ID:10110024
大小:29.00 KB
页数:3页
时间:2018-05-26
《二次函数教材分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、镇江新区九年级集体备课材料《二次函数》教材分析一、教学目标:1.使学生经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系;2.能用表格、关系式、图象表示变量之间的二次函数关系,发展有条理地进行思考和语言表达的能力,并能根据具体问题,选取适当的方法表示变量之间的二次函数关系;3.会作二次函数的图象,并能根据图象对二次函数的性质进行分析,并逐步积累研究一般函数性质的经验;4.能根据二次函数的表达式,确定二次函数的开口方向、对称轴和顶点坐标。5.能根据二次函数的性质解决实际问题。
2、二、教材分析:本章是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。二次函数的图像抛物线,既是人们最为熟悉的曲线之一,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠
3、定基础和积累经验。函数不仅仅可以看成变量之间的依赖关系,同时函数的思想方法将贯穿整个数学学习过程。学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。这几节的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质
4、,掌握研究函数的方法,体会函数的思想是十分重要的,因此这一章节的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。这一章节的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换及二次函数性质的灵活应用。3镇江新区九年级集体备课材料三、本章编写特点:有关函数的内容是中学数学中的一条主线,也是中学数学中的一个稳定的内容。为了充分利用教材,丰富教与学的方式,帮助学生更好地认识和理解函数概念,了解函数与其它内容的联系,初步运用函数这一描述现
5、实世界中变量之间依赖关系的重要数学模型去解决一些实际问题,体现新课程的理念,教材在体例、结构、呈现方式等方面体现了以下特点:(一)强调背景,展现过程,改进学习方式任何一个数学概念和结论的引入,总有它的现实或数学理论发展的背景或数学发展历史上的背景,在教材的编排和内容的选择上,强调背景,展现过程,让学生感到概念和结论的得出是水到渠成的。例如通过典型的、丰富的具体实例(涉及运动变化、经济生活等),展示函数概念产生的背景,使学生理解如何用函数来刻画现实世界中变量之间的相互依赖关系,通过实例(最佳设计、销售方案、物体运动等),帮助学生
6、理解二次函数模型。在丰富的背景中,提出问题,引导学生思考、经历知识发生发展的过程,经历观察、归纳、概括、交流、反思的思维过程;鼓励学生积极参与这个过程,主动思考、自主探索。例如在函数概念学习中,教科书通过观察实例、归纳共性、逐层分析概念,让学生感受函数概念发生发展的过程,提升的过程。(二)突出联系,体现应用,培养应用意识数学学习本身和新课程模块式的结构,都需要我们充分关注知识内容间的联系。函数的基础知识在现实生活、科技、经济和许多学科中都有着广泛的应用。因此,教科书安排了较多的实际应用问题,如储蓄问题、种植面积问题、最佳设计问
7、题、销售问题等等,并专门设置了函数的应用,其中就包括函数与方程的联系、函数模型及其应用,让学生体会运用函数观点解决实际问题的作用,让学生初步体验建立函数模型的过程和方法。(三)重视数学思想方法数学的学习不仅是单纯的知识学习,更应注意提炼和逐渐掌握其中蕴含的数学思想方法。本章中蕴含了丰富的数学思想方法,主要有数形结合、用函数观点研究问题、数学建模的思想方法。数形结合的思想方法贯穿了本章的始末,在研究二次函数性质过程中函数图象、表格与解析式的相互结合使用。用函数观点研究问题、数学建模的思想方法主要反映建立实际问题的二次函数模型的过
8、程中。3镇江新区九年级集体备课材料四、教学建议:(一)注意由浅入深、循序渐进地理解二次函数的概念二次函数的解析式是函数形式化、符号化的重要特征,教材中二次函数的概念是直接用形式化的方式给出的,这种表述简洁明了,便于学生理解和掌握,二次函数的解析式不仅形式简单,而且可以加深学生
此文档下载收益归作者所有