高三高考复习数学专题学案:《平面向量》《向量的概念与几何运算》

ID:9598639

大小:284.54 KB

页数:3页

时间:2018-05-03

高三高考复习数学专题学案:《平面向量》《向量的概念与几何运算》_第1页
高三高考复习数学专题学案:《平面向量》《向量的概念与几何运算》_第2页
高三高考复习数学专题学案:《平面向量》《向量的概念与几何运算》_第3页
资源描述:

《高三高考复习数学专题学案:《平面向量》《向量的概念与几何运算》》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第1课时向量的概念与几何运算基础过关1.向量的有关概念⑴既有又有的量叫向量.的向量叫零向量.的向量,叫单位向量.⑵叫平行向量,也叫共线向量.规定零向量与任一向量.⑶且的向量叫相等向量.2.向量的加法与减法⑴求两个向量的和的运算,叫向量的加法.向量加法按法则或法则进行.加法满足律和律.⑵求两个向量差的运算,叫向量的减法.作法是将两向量的重合,连结两向量的,方向指向.3.实数与向量的积⑴实数与向量的积是一个向量,记作.它的长度与方向规定如下:①

2、

3、=.②当>0时,的方向与的方向;当<0时,的方向与的方向;当=0时,.⑵(μ)=.(+μ)=.

4、(+)=.⑶共线定理:向量与非零向量共线的充要条件是有且只有一个实数λ使得.4.⑴平面向量基本定理:如果、是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数、,使得.⑵设、是一组基底,=,=,则与共线的充要条件是.典型例题例1.已知△ABC中,D为BC的中点,E为AD的中点.设,,求.解:=-=(+)-=-+变式训练1.如图所示,D是△ABC边AB上的中点,则向量等于()ADBCA.-+B.--C.-D.+解:A例2.已知向量,,,其中、不共线,求实数、,使.解:=λ+μ2-9=(2λ+2μ)+(-3λ+3μ

5、)2λ+2μ=2,且-3λ+3μ=-9λ=2,且μ=-1变式训练2:已知平行四边形ABCD的对角线相交于O点,点P为平面上任意一点,求证:证明+=2,+=2+++=4例3.已知ABCD是一个梯形,AB、CD是梯形的两底边,且AB=2CD,M、N分别是DC和AB的中点,若,,试用、表示和.解:连NC,则;BOADCNM变式训练3:如图所示,OADB是以向量=,=为邻边的平行四边形,又=,=,试用、表示,,.解:=+,=+,=-例4.设,是两个不共线向量,若与起点相同,t∈R,t为何值时,,t,(+)三向量的终点在一条直线上?解:设(∈R)

6、化简整理得:∵,∴故时,三向量的向量的终点在一直线上.变式训练4:已知,设,如果,那么为何值时,三点在一条直线上?解:由题设知,,三点在一条直线上的充要条件是存在实数,使得,即,整理得.①若共线,则可为任意实数;②若不共线,则有,解之得,.综上,共线时,则可为任意实数;不共线时,.小结归纳1.认识向量的几何特性.对于向量问题一定要结合图形进行研究.向量方法可以解决几何中的证明.2.注意与O的区别.零向量与任一向量平行.3.注意平行向量与平行线段的区别.用向量方法证明AB∥CD,需证∥,且AB与CD不共线.要证A、B、C三点共线,则证∥即

7、可.4.向量加法的三角形法则可以推广为多个向量求和的多边形法则,特点:首尾相接首尾连;向量减法的三角形法则特点:首首相接连终点.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《高三高考复习数学专题学案:《平面向量》《向量的概念与几何运算》》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第1课时向量的概念与几何运算基础过关1.向量的有关概念⑴既有又有的量叫向量.的向量叫零向量.的向量,叫单位向量.⑵叫平行向量,也叫共线向量.规定零向量与任一向量.⑶且的向量叫相等向量.2.向量的加法与减法⑴求两个向量的和的运算,叫向量的加法.向量加法按法则或法则进行.加法满足律和律.⑵求两个向量差的运算,叫向量的减法.作法是将两向量的重合,连结两向量的,方向指向.3.实数与向量的积⑴实数与向量的积是一个向量,记作.它的长度与方向规定如下:①

2、

3、=.②当>0时,的方向与的方向;当<0时,的方向与的方向;当=0时,.⑵(μ)=.(+μ)=.

4、(+)=.⑶共线定理:向量与非零向量共线的充要条件是有且只有一个实数λ使得.4.⑴平面向量基本定理:如果、是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数、,使得.⑵设、是一组基底,=,=,则与共线的充要条件是.典型例题例1.已知△ABC中,D为BC的中点,E为AD的中点.设,,求.解:=-=(+)-=-+变式训练1.如图所示,D是△ABC边AB上的中点,则向量等于()ADBCA.-+B.--C.-D.+解:A例2.已知向量,,,其中、不共线,求实数、,使.解:=λ+μ2-9=(2λ+2μ)+(-3λ+3μ

5、)2λ+2μ=2,且-3λ+3μ=-9λ=2,且μ=-1变式训练2:已知平行四边形ABCD的对角线相交于O点,点P为平面上任意一点,求证:证明+=2,+=2+++=4例3.已知ABCD是一个梯形,AB、CD是梯形的两底边,且AB=2CD,M、N分别是DC和AB的中点,若,,试用、表示和.解:连NC,则;BOADCNM变式训练3:如图所示,OADB是以向量=,=为邻边的平行四边形,又=,=,试用、表示,,.解:=+,=+,=-例4.设,是两个不共线向量,若与起点相同,t∈R,t为何值时,,t,(+)三向量的终点在一条直线上?解:设(∈R)

6、化简整理得:∵,∴故时,三向量的向量的终点在一直线上.变式训练4:已知,设,如果,那么为何值时,三点在一条直线上?解:由题设知,,三点在一条直线上的充要条件是存在实数,使得,即,整理得.①若共线,则可为任意实数;②若不共线,则有,解之得,.综上,共线时,则可为任意实数;不共线时,.小结归纳1.认识向量的几何特性.对于向量问题一定要结合图形进行研究.向量方法可以解决几何中的证明.2.注意与O的区别.零向量与任一向量平行.3.注意平行向量与平行线段的区别.用向量方法证明AB∥CD,需证∥,且AB与CD不共线.要证A、B、C三点共线,则证∥即

7、可.4.向量加法的三角形法则可以推广为多个向量求和的多边形法则,特点:首尾相接首尾连;向量减法的三角形法则特点:首首相接连终点.

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭