正文描述:《窗函数法设计低通滤波器》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、摘要此次课程设计主要是要采集一段语音信号,并用MATLAB软件绘制出语音信号波形并对语音信号进行截短、预处理等操作,观察其波形的变化并与原始语音信号波形加以对比。然后对该语音信号加入高斯白噪声,观察加噪后的波形及其频谱图,观察噪声对语音信号的影响。最后根据给定的相应技术指标,用汉宁窗设计一个满足指标的FIR低通滤波器,对该语音信号进行滤波去噪处理,最后对前后时域和频域的波形图进行对比分析,从波形可以看出噪声被完全滤除,达到了语音不失真的效果。同时在课设过程中,通过与同组的其他同学交流,比较各种滤波方法性能
2、的优劣并找到相对的最佳滤波方法。在此次课程设计中,以WindowsXP系统为操作平台.本次设计在MATLAB环境下,用窗函数法设计FIR滤波器。通过了解不同的窗函数方法及性能设计FIR低通滤波器,并对对所设计的滤波器进行分析比较,得出各种方法设计的滤波器的优缺点,从而正确的选择FIR数字滤波器的窗函数及设计方法。关键词:FIR滤波器,MATLAB,窗函数,汉宁窗目录前言1一MATLAB程序设计的基本方法2二数字信号处理的基本理论与方法32.1设计理论依据3三利用MATLAB采集语言信号并分析53.1语音的
3、录入与打开53.2录制语音信号过程53.3时域信号的FFT分析6四用MATLAB环境采用窗函数法设计数字滤波器74.1数字滤波器概念及原理74.2数字滤波器设计的过程74.3低通FIR滤波器基本原理84.4利用窗函数法设计线性相位FIR数字滤波器84.5利用hanning窗设计低通滤波器10五设计过程115.1流程图115.3信号频谱分析135.4信号的脉冲响应13设计总结15参考文献16附录17致谢20前言数字化是控制系统的重要发展方向,而数字信号处理已在通信、语音、图像、自动控制、雷达、军事、航空航天
4、等领域广泛应用。数字信号处理方法通常涉及变换、滤波、频谱分析、编码解码等处理。数字滤波是重要环节,它能满足滤波器对幅度和相位特性的严格要求,克服模拟滤波器所无法解决的电压和温度漂移以及噪声等问题。而有限冲激响应FIR滤波器在设计任意幅频特性的同时能够保证严格的线性相位特性。利用MATLAB工具软件的辅助设计,使得FIR滤波器具有快速、灵活、适用性强,硬件资源耗费少等特点。FIR滤波器是最常用的组件之一,它完成信号预调、频带选择和滤波等功能。FIR滤波器在截止频率的边沿陡峭性能虽然不及IIR滤波器,但是,考
5、虑到FIR滤波器严格的线性相位特性和不像IIR滤波器存在稳定性的问题,FIR滤波器能够在数字信号处理领域得到广泛的应用。FIR是有限冲激响应(Finite Impulse Response)的简称。由线性系统理论可知,在某种适度条件下,输入到线性系统的一个冲击完全可以表征系统。当我们处理有限的离散数据时,线形系统的响应(包括对冲击的响应)也是有限的。若线性系统仅是一个空间滤波器,则通过简单地观察它对冲击的响应,我们就可以完全确定该滤波器。通过这种方式确定的滤波器称为有限冲击响应(FIR)滤波器。FIR滤波
6、器是在数字信号处理(DSP)中经常使用的两种基本的滤波器之一。FIR 滤波器具有严格的相位特性,对于信号处理和数据传输是很重要的。目前FIR滤波器的设计方法主要有三种:窗函数法、频率取样法和切比雪夫等波纹逼近的最优化设计方法。常用的是窗函数法和切比雪夫等波纹逼近的最优化设计方法。用窗函数设FIR 滤波器的基本思路:从时域出发设计 h(n)逼近理想 hd(n)。设理想滤波器的单位响应在时域表达为hd(n),则Hd(n) 一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。要想得到一个因果
7、的有限长的滤波器单位抽样响应 h(n)最直接的方法是先将hd(n)往右平移,再进行截断,即截取为有限长因果序列:h(n)=hd(n)w(n),并用合适的窗函数进行加权作为 FIR 滤波器的单位脉冲响应。MATLAB 设计 FIR 滤波器有多种方法和对应的函数。窗函数设计法不仅在数字滤波器的设计中占有重要的地位,同时可以用于功率谱的估计,从根本上讲,使用窗函数的目的就是消除由无限序列的截短而引起的Gibbs现象所带来的影响。17一MATLAB程序设计的基本方法MATLAB是矩阵实验室(MatrixLabor
8、atory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。它集图示和精确计算于一身,在应用数学、物理、化工、机电工程、医药、金融和其他需要进行复杂数值计算的领域得到广泛应用。它不
显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。