欢迎来到天天文库
浏览记录
ID:8726311
大小:509.50 KB
页数:9页
时间:2018-04-06
《中考复习实数教案教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§1.2实数★课标视点把握课程标准,做到有的放矢1.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根和立方根.2.了解开方与乘方互逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解实数的意义.知道实数与数轴上的点是一一对应的,了解无理数的概念4.了解二次根式的概念及加、减、乘、除运算法则.会进行实数的简单运算★热点探视把握考试脉搏,做到心中有数1.9的算术平方根是A.-3B.3C.±3D.81(2005南京)2.化简的结果是A.B.C.D.(2005宜昌)3.下列各数中,无理数的是A.
2、B.C.D.4.下列运算结果正确的是A.B.C.D.(2005徐州)5.下列等式成立的是A.B.C.D.(2005漳州)6.已知x、y为实数,且,则x-y的值为(2005黄冈)A.3B.-3C.1D.-17.下列关于的说法中,错误的是(2005金湖)A.是无理数B.3<<4C.是12的算术平方根D.不能再化简8.用计算器计算sin35°≈,≈.(保留四位有效数字)(2005常州)9.计算:.(2005徐州)10.计算:.★案例导学题型归纳引路,做到各个击破【题型一】数的开方运算【例1】1.的平方根是;算术平方根是2.;的算术平方根是;的立方根是.AB3.
3、实数上的点A和点B之间的整数点有-4.在3.14,,,,p这五个数中,无理数的个数是A.1B.2C.3D.4【答案】1.;92.9;3,23.-1,0,1,24.B【导学】1.;2.9,“的算术平方根”即“9的算术平方根";3.,.3-2-1012【题型二】二次根式的运算【例2】计算:(1);(2);(3); (4);(5)已知,,从这4个数中任意选取3个数求和.解:(1)===. (2)== =.(3)==-6.(4)==(5),,,。【导学】1.二次根式化简两中类型,其一:根号内有平方因式,如;其二:根号内有分母,如.2.分母有理化的方法,利用
4、分式的基本性质,分子分母同时乘以分母有理化因式,如,=.3.乘法公式适合二次根式的运算.【题型三】二根式运算的应用【例3】全球气候变暖导致一些冰川融化并消失。在冰川消失12年后,一种低等植物苔藓,就开始在岩石上生长。每一个苔藓都会长成近似的圆形。苔藓的直径和其生长年限近似地满足如下地关系式:d=7(t≥12)其中d表示苔藓的直径,单位是厘米,t代表冰川消失的时间(单位:年).(1)计算;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?【解】(1)当t=16时,,即冰川消失16年后苔藓的直径为14厘米;(2)当=35时,,化简,得,两边
5、平方,得,∴【导学】.这是解所谓的无理方程的重要方法.【例4】如图,在的正方形网格中,每个小正方形的边长都为1.请在所给网格中按下列要求画出图形.(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为;(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数;(3)以(1)中的AB为边的两个凸多边形,使它们都是中心对称图形且不全等,其顶点都在格点上,各边长都是无理数.(图1)(答图2)【解】★智闯三关发挥聪明睿智,关公怎比我强核心知识----基础关1.在下列实数中,无理数是( )A.5
6、B.0C.D.2.下列运算中,错误的是 ( )A. B.C. D.3.设,则下列结论正确的是( )A. B.C. D.BAC(第4题)4.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形中,边长为无理数的边数是 ( )A.0 B.1 C.2 D.35.已知,则的值为()A.B.C.3D.不能确定6.如图,数轴上表示1,的对应点分别为点A,点B.若点B关于点A的对称点为点C,则点C所表示的数是OABC12A.B.C.D.7.估
7、算的值( )A.在4和5之间B.在5和6之间C.在6和7之间D.在7和8之间8.应中共中央总书记胡锦涛的邀请,中国国民党主席连战先生,中国亲民党主席宋楚瑜先生分别从台湾到大陆参观访问,先后都到西安,都参观了新建的“大唐芙蓉园”,该园的占地面积约为800000m2,若按比例尺1∶2000缩小后,其面积大约相当于()A.一个篮球场的面积B.一张乒乓球台台面的面积C.《陕西日报》的一个版面的面积D.《数学》课本封面的面积ABC9.某装饰公司要在如图所示的五角星形中,沿边每隔20厘米装一盏闪光灯.若米,则需安装闪光灯 A.100盏 B.101盏 C.1
8、02盏 D.103盏10.“数轴上的点并不都表示有理数,如图中数轴上的点P所
此文档下载收益归作者所有