欢迎来到天天文库
浏览记录
ID:83577068
大小:729.12 KB
页数:5页
时间:2024-08-31
《安徽省皖东名校联盟体2024届高三上学期9月第二次质量检测数学(原卷版).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
2023年皖东名校联盟体高三9月第二次教学质量检测数学试卷试卷满分:150分考试用时:120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则下列说法正确的是()A.,B.,C.,D.,2.若,则()A.B.1C.D.23.已知向量,其中,,则的最大值为()A.B.C.D.14.已知A,B,C为三个随机事件且,,>0,则A,B,C相互独立是A,B,C两两独立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.若,b=1.2,c=ln3.2,则a,b,c的大小关系为()A.a>b>cB.c>b>aC.a>c>bD.b>a>>c6.如图,正方形的中心与正方形的中心重合,正方形的面积为2,截去如图所示的阴影部分后,将剩下的部分翻折得到正四棱锥(A,B,C,D四点重合于点M),当四棱锥体积达到最大值时,图中阴影部分面积为() A.B.C.D.7.直观想象是数学六大核心素养之一,某位教师为了培养学生的直观想象能力,在课堂上提出了这样一个问题:现有10个直径为4的小球,全部放进棱长为a的正四面体盒子中,则a的最小值为()A.B.C.D.8.设,将的图像向右平移个单位,得到的图像,设,,则的最大值为()A.B.C.D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的.全选对的得5分,部分选对的得2分,有选错的得0分.9.已知三次函数,下列结论正确的是()A.当时,单调递减区间为B.当时,单调递增区间C.当时,若函数恰有两个不同的零点,则D.当时,恒成立,则a的取值范围为10.在四面体ABCD中,,,E,F,G分别是棱BC,AC,AD上的动点,且满足AB,CD均与面EFG平行,则()A.直线AB与平面ACD所成的角的余弦值为B.四面体ABCD被平面EFG所截得截面周长为定值1 C.面积的最大值为D.四面体ABCD的内切球的表面积为11.已知抛物线C:的焦点为F,过点F的直线与抛物线C交于A、B两点,直线l:,M为l上一动点,则下列结论正确的是()A.的最小值为10.B.若,为垂足,且为的平分线,则⊥C.对任意点M,均有D.当为等边三角形时,面积为12.记有限数集为M,1∈M,定义在M上的函数记为,的图象经过旋转变换之后会得到g(x)的图象(的图象有可能不是函数图象),若的图象绕原点逆时针旋转后得到的图象与原函数的图象重合,则在下列选项中f(1)的取值不可能是()A.0B.C.D.三、填空题:本题共4小题,每小题5分,共20分.13.数学家波利亚说:“为了得到一个方程,我们必须把同一个量以两种不同方法表示出来,即将一个量算两次,从而建立相等关系”这就是算两次原理,又称为富比尼原理.由等式利用算两次原理可得__________.(用组合数表示即可)14.已知,又P点为圆O:上任意一点且满足,则________.15.已知正实数,b满足,则当取最小值时,________.16.如图,椭圆:()的右焦点为F,离心率为e,点P是椭圆上第一象限内任意一点且,,.若,则离心率e的最小值是_________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.数列各项均为正数,的前n项和记作,已知,.(1)求的通项公式;(2)设,求数列的前2023项和.18.在△ABC中,,D在边AC上,∠A,∠B.∠C对应的边为a,b,c.(1)当BD为的角平分线且时,求的值;(2)当D为AC的中点且时,求的取值范围.19.如图,正方体的棱长为4,M,N,P,Q分别为棱的中点,平面与平面将该正方体截成三个多面体.(1)求平面与平面所成夹角的余弦值的大小;(2)求多面体的体积.20.2022年国庆节某商场进行砸金蛋活动,现有8个外形完全相同的金蛋,8个金蛋中有1个一等奖,1个二等奖,3个三等奖,3个参与奖,现甲乙两人进行砸金蛋比赛,砸中1个一等奖记4分,砸中1个二等奖记3分,砸中1个三等奖记2分,砸中1个参与奖记1分,规定砸蛋人得分不低于8分为获胜,否则为负,并制定规则如下:①一个人砸蛋,另一人不砸蛋;②砸蛋的人先砸1个金蛋,若砸出的是一等奖,则再砸2个金蛋;若砸出的不是一等奖,则再砸3个金蛋,砸蛋人的得分为两次砸出金蛋的记分之和. (1)若由甲砸蛋,如果甲先砸出的是一等奖,求该局甲获胜的概率;(2)若由乙砸蛋,如果乙先砸出的是二等奖,求该局乙得分的分布列和数学期望.21.已知双曲线()左、右焦点为,其中焦距为,双曲线经过点.(1)求双曲线的方程;(2)过右焦点作直线交双曲线于M,N两点(M,N均在双曲线的右支上),过原点O作射线,其中,垂足为为射线与双曲线右支的交点,求的最大值.22.已知函数,,曲线与在原点处的切线相同.(1)求的单调区间;
此文档下载收益归作者所有
举报原因
联系方式
详细说明
内容无法转码请点击此处