parameter inference for stochastic kinetic models of bacterial gene regulation a bayesian approach to systems biology

parameter inference for stochastic kinetic models of bacterial gene regulation a bayesian approach to systems biology

ID:7297819

大小:741.60 KB

页数:32页

时间:2018-02-10

parameter inference for stochastic kinetic models of bacterial gene regulation  a bayesian approach to systems biology_第1页
parameter inference for stochastic kinetic models of bacterial gene regulation  a bayesian approach to systems biology_第2页
parameter inference for stochastic kinetic models of bacterial gene regulation  a bayesian approach to systems biology_第3页
parameter inference for stochastic kinetic models of bacterial gene regulation  a bayesian approach to systems biology_第4页
parameter inference for stochastic kinetic models of bacterial gene regulation  a bayesian approach to systems biology_第5页
资源描述:

《parameter inference for stochastic kinetic models of bacterial gene regulation a bayesian approach to systems biology》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、ParameterInferenceforStochasticKineticModelsofBacterialGeneRegulation:ABayesianApproachtoSystemsBiologyUniversityPressScholarshipOnlineOxfordScholarshipOnlineBayesianStatistics9JoséM.Bernardo,M.J.Bayarri,JamesO.Berger,A.P.Dawid,DavidHeckerman,AdrianF.M.Smith

2、,andMikeWestPrintpublicationdate:2011PrintISBN-13:9780199694587PublishedtoOxfordScholarshipOnline:January2012DOI:10.1093/acprof:oso/9780199694587.001.0001ParameterInferenceforStochasticKineticModelsofBacterialGeneRegulation:ABayesianApproachtoSystemsBiologyD

3、arrenJ.WilkinsonDOI:10.1093/acprof:oso/9780199694587.003.0023AbstractandKeywordsBacteriaaresingle‐celledorganismswhichoftendisplayheterogeneousbehaviour,evenamongpopulationsofgeneticallyidenticalcellsinuniformenvironmentalconditions.Markovprocessmodelsarisin

4、gfromthetheoryofstochasticchemicalkineticsareoftenusedtounderstandthegeneticregulationofthebehaviourofindividualbacterialcells.However,suchmodelsoftencontainuncertainparameterswhichneedtobeestimatedfromexperimentaldata.Parameterestimationforcomplexhigh‐dimen

5、sionalMarkovprocessmodelsusingdiverse,partial,noisyandpoorlycalibratedtime‐courseexperimentaldataisachallenginginferentialproblem,butacomputationallyintensiveBayesianapproachturnsouttobeeffective.Theutilityandadded‐valueoftheapproachisdemonstratedinthecontex

6、tofastochasticmodelofakeycellulardecisionmadebythegram‐positivebacteriumBacillussubtilis,usingquantitativedatafromsingle‐cellPage1of32ParameterInferenceforStochasticKineticModelsofBacterialGeneRegulation:ABayesianApproachtoSystemsBiologyfluorescencemicroscop

7、yandflowcytometryexperiments.Keywords:Bacillussubtilus,GeneticRegulation,GFP,Likelihood-freeMCMC,Motility,Time-lapseFluorescenceMicroscopySummaryBacteriaaresingle‐celledorganismswhichoftendisplayheterogeneousbehaviour,evenamongpopulationsofgeneticallyidentic

8、alcellsinuniformenvironmentalconditions.Markovprocessmodelsarisingfromthetheoryofstochasticchemicalkineticsareoftenusedtounderstandthegeneticregulationofthebehaviourofindividualbacterialcells.Ho

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。