4.8 BUGS for a Bayesian analysis of stochastic volatility models

4.8 BUGS for a Bayesian analysis of stochastic volatility models

ID:40254252

大小:1.23 MB

页数:18页

时间:2019-07-29

4.8 BUGS for a Bayesian analysis of stochastic volatility models_第1页
4.8 BUGS for a Bayesian analysis of stochastic volatility models_第2页
4.8 BUGS for a Bayesian analysis of stochastic volatility models_第3页
4.8 BUGS for a Bayesian analysis of stochastic volatility models_第4页
4.8 BUGS for a Bayesian analysis of stochastic volatility models_第5页
资源描述:

《4.8 BUGS for a Bayesian analysis of stochastic volatility models》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、EconometricsJournal(2000),volume3,pp.198–215.BUGSforaBayesiananalysisofstochasticvolatilitymodelsRENATEMEYER†,JUNYU‡†DepartmentofStatistics,UniversityofAuckland,PrivateBag92019,Auckland,NewZealandE-mail:meyer@stat.auckland.ac.nz‡DepartmentofEconomics,UniversityofAuckland,Priv

2、ateBag92019,Auckland,NewZealandE-mail:j.yu@auckland.ac.nzReceived:April2000SummaryThispaperreviewsthegeneralBayesianapproachtoparameterestimationinstochasticvolatilitymodelswithposteriorcomputationsperformedbyGibbssampling.ThemainpurposeistoillustratetheeasewithwhichtheBayesi

3、anstochasticvolatilitymodelcannowbestudiedroutinelyviaBUGS(BayesianinferenceusingGibbssampling),arecentlydeveloped,user-friendly,andfreelyavailablesoftwarepackage.Itisanidealsoftwaretoolfortheexploratoryphaseofmodelbuildingasanymodificationsofamodelincludingchangesofpriorsands

4、amplingerrordistributionsarereadilyrealizedwithonlyminorchangesofthecode.However,duetothesinglemoveGibbssampler,convergencecanbeslow.BUGSautomatesthecalculationofthefullconditionalposteriordistributionsusingamodelrepresentationbydirectedacyclicgraphs.Itcontainsanexpertsystemf

5、orchoosinganeffectivesamplingmethodforeachfullconditional.Furthermore,softwareforconvergencediagnosticsandstatisticalsummariesisavailablefortheBUGSoutput.TheBUGSimplementationofastochasticvolatilitymodelisillustratedusingatimeseriesofdailyPound/Dollarexchangerates.Keywords:St

6、ochasticvolatility,Gibbssampler,BUGS,Heavy-taileddistributions,Non-Gaussiannonlineartimeseriesmodels,Leverageeffect.1.IntroductionThestochasticvolatility(SV)modelintroducedbyTauchenandPitts(1983)andTaylor(1982)isusedtodescribefinancialtimeseries.ItoffersanalternativetotheARCH-

7、typemodelsofEngle(1982)andBollerslev(1986)forthewell-documentedtime-varyingvolatilityexhibitedinmanyfinancialtimeseries.TheSVmodelprovidesamorerealisticandflexiblemodellingoffinancialtimeseriesthantheARCH-typemodels,sinceitessentiallyinvolvestwonoiseprocesses,onefortheobservatio

8、ns,andoneforthelatentvolatilities.Theso-calledobservationerrorsaccou

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。