2、) A.线段 P B.线段C.中点与中点连成的线段D.中点与中点连成的线段解:联想到线面垂直,转化为求AP运动所形成的面与垂直,易证,故选A.1.2 联想圆的定义 【例2】如图所在的平面和四边形所在的平面垂直,且,,,,,则点在平面内的轨迹是( A)6A.圆的一部分 B.椭圆的一部分C.双曲线的一部分 D.抛物线的一部分, 有在平面PAB内,以AB所在直线为X轴,AB的中点为坐标原点,设P(x,y)则,化简得,注意到点P不在直线AB上,故除掉选A.练习:已知正方体的棱长为1,在正方体的表面上与点A距离为的点的集合形成一条曲线,则该曲线的长度
3、为(B) A. B. C. D. 解:当点P在上底面时,连AP、A1P,在直角APA1中,求得PA1=,即弧P1P2的长.同理左侧面的弧P5P6、后侧面的弧P3P4的长也为;当点P在前侧面时,弧P1P6的半径为,因为直角A1P1A中,直角边A1P1的长为斜边P1A的一半,所以弧P1P6的圆心角为6,从而弧P1P6的长为.同理右侧面的弧P2P3的长与下底面的弧P4P3的长的长也为.故曲线的总长度为,故选B.1.3 联想到抛物线的定义【例3】 已知正方体的棱长为1,点M在棱AB上,且AM=,点P是平面ABCD内的动点,且点P到直线的距离的平方与点P到点M的距
5、在曲线的形状为(C) A.直线 B.双曲线 C.抛物线 D.圆解:因为B1C1垂直于平面ABB1A1,所以PB1为点P到直线B1C1的距离,于是问题转化为在平面ABB1A1内,点P到定点B1的距离与点P到定直线AB的距离相等.故根据抛物线的定义可知选答案C. 1.4 联想到球面的定义【例4】如图,已知正方形的棱长为2,长为2的线段的一个端点在棱上运动,点N在正方形内运动,则中点的轨迹的面积是()A. B. C. D.解:充分利用MN的长度不变,是直角三角形,P点为斜边的中点,.故点的轨迹是以为圆心,1为半径的球面位于正方体内的部