欢迎来到天天文库
浏览记录
ID:6700359
大小:74.00 KB
页数:6页
时间:2018-01-22
《公理化方法和中学几何公理体系》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、公理化方法和中学几何公理体系12数学陈婷12220620摘要:数学公理化方法是研究数学的重要思想方法,它对于近代数学和其他自然科学的发展有过巨大作用和深远影响,它很大程度上推动了数学的发展。而数学的教育更多的是方法和思想的教育,公理化方法在教学教育上有着举足轻重的地位。本文将从几何发展简史、公理化方法的意义与作用等方面探究公理化方法对中学几何公理体系的影响。关键词:公理化方法;几何学;发展史;中学几何;教学启示正文:一、几何学发展简史几何学是一门研究『空间』与『移动』的学问.这里的『空间』指的是正统的『几何空间』,包括各种具体或抽象的几何图形,甚至是整个宇宙空间的几何构造;而
2、『移动』则是这些几何空间的表现,例如:平移,旋转,对称,波动等等.因此,几何学可说是真实世界与抽象世界的舞台与演员的演出.而数学家Descartes(笛卡儿,15961650)曾说:『人类心智与生俱来有完美,空间,时间和运动等观念.』不论是实际生活上为了丈量与计算的需要,或是对於宇宙空间的好奇与探索,亦或是对於『美』的追求,自从人类开始生活在地球上,几何概念的演进便未曾停歇.而几何学的发展,也使人类开始真正认识我们所生存的宇宙空间。 在史学中,几何学的确立和统一经历了二千多年,数百位数学家做出了不懈的努力。一)欧氏几何的创始 公认的几何学的确立源自公元300多年前,希腊数学
3、家欧几里得著作《原本》。欧几里得在《原本》中创造性地用公理法对当时所了解的数学知识作了总结。全书共有13卷,包括5条公理,5条公设,119个定义和465条命题。这些公设和公理及基本定义成为《原本》的推理的基础。 欧几里得的《原本》是数学史上的一座里程碑,在数学中确立了推理的范式。他的思想被称作“公理化思想”。欧几里德几何自诞生两千多年来,因其论证的严密性而被誉为完美无瑕。但到了19世纪,由于非欧几何的创立,大大提高了公理化方法,数学的严格性标准大为提高,从而欧几里德几何的逻辑缺陷逐渐暴漏出来了,具体将有以下几点:1、在欧式几何中用了重合法来证明全等:在重合法中,首先使用了运
4、动的概念,这样就定性了欧氏几何属于经验综合知识,他与人的经验有关,不属于纯粹知识。因此没有逻辑根据,他在证明中,移动图形,且默认为图形的性质不变,这在物理经验中是需要非常多的约束条件的,而欧几里德只是默认,并没严格的初始约束条件,因此逻辑上的严格性有问题。2、几何中的某些定义,不能自在自为自足,有时甚至使用未加定义的概念。而有些被定义的概念往往是多余的,含糊不清。对一些不能定义的初始条件反而定义,甚至是不严格的定义。如:点、线、面等等初始概念就不应该定义,反而不严格的定义。3、引用从未提起过,且未被发觉的假定。4、证明不严格,许多定理的证明都依赖于感性直观,通过对图形的直观来
5、证明。缺乏对直观与抽象的区别,过分依赖于感性直观。许多知识都是经验中的知识。5、在欧氏几何的五条初始公理中,第五公理(平行线公理)引来许多争议。在陈述上、内容上复杂、累赘。缺乏说服力,不自明。6二)解析几何的诞生 解析几何是变量数学最重要的体现。解析几何的基本思想是在平面上引入“坐标”的概念,并借助这种坐标在平面上的点和有序实数对(x,y)建立一一对应的关系,于是几何问题就转化为代数问题。 解析几何的真正创立者应该是法国数学家迪卡儿和费马。1637年迪卡儿在《更好的指导推理和寻求科学真理的方法论》的附录《几何学》[1]中清晰的体现了解析几何的思想。而费马则是在论平面和立体的
6、轨迹引论中阐述了解析几何的原理,他在书中提出并使用了坐标的概念,同时建立了斜坐标系和直角坐标系。三)非欧几何的诞生与发展 非欧几何的诞生源于人们长久以来对欧几里得《原本》中第五公设即平行公设的探讨,但一直未得到公设的结论。直到数学家高斯、波约和俄国数学家罗巴切夫斯基在自己的论著中都描述了这样一种几何,以“从直线外一点可以引不止一条直线平行于已知直线”作为替代公式,进行推理而得出的新的一套几何学定理,并将它命名为非欧几何,一般称为“罗氏几何”。1854年德国数学家黎曼发展了罗巴切夫斯基的几何思想,从而建立了一种更为一般化的几何,称为“黎曼几何”。他认为欧氏几何和罗氏几何都是黎
7、曼几何的一种特例。直到19世纪后期,数学家贝尔特拉米、克莱因、庞加莱在欧氏空间建立了非欧几何的模型,非欧几何才得到理解和承认。非欧几何的产生具有三个重大意义:1、解决了平行公理的独立性问题。推动了一般公理体系的独立性、相容性、完备性问题的研究,促进了数学基础这一更为深刻的数学分支的形成与发展。 2、证明了对公理方法本身的研究能推动数学的发展,理性思维和对严谨、逻辑和完美的追求,推动了科学,从而推动了社会的发展和进步。在数学内部,各分支纷纷建立了自己的公理体系,包括被公认为最困难的概率论也在20世纪30年
此文档下载收益归作者所有