高中数学竞赛 历届imo竞赛试题(1-46届完整中文版)

高中数学竞赛 历届imo竞赛试题(1-46届完整中文版)

ID:6599049

大小:274.50 KB

页数:37页

时间:2018-01-19

高中数学竞赛 历届imo竞赛试题(1-46届完整中文版)_第1页
高中数学竞赛 历届imo竞赛试题(1-46届完整中文版)_第2页
高中数学竞赛 历届imo竞赛试题(1-46届完整中文版)_第3页
高中数学竞赛 历届imo竞赛试题(1-46届完整中文版)_第4页
高中数学竞赛 历届imo竞赛试题(1-46届完整中文版)_第5页
资源描述:

《高中数学竞赛 历届imo竞赛试题(1-46届完整中文版)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第1届IMO1. 求证(21n+4)/(14n+3)对每个自然数n都是最简分数。2.  设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解: (a)A=√2;(b)A=1;(c)A=2。3. a、b、c都是实数,已知cosx的二次方程acos2x+bcosx+c=0,试用a,b,c作出一个关于cos2x的二次方程,使它的根与原来的方程一样。当a=4,b=2,c=-1时比较cosx和cos2x的方程式。4. 试作一直角三角形使其斜边为已知的c,斜边上的中线是两直角边的几何平均值。5. 在线段AB上任意选取

2、一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N,   (a.)求证AF、BC相交于N点;  (b.)求证不论点M如何选取直线MN都通过一定点S;   (c.)当M在A与B之间变动时,求线断PQ的中点的轨迹。6. 两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q上。第2届IMO1. 找出所有具有下列性质的三位数N:N能被11整除

3、且N/11等于N的各位数字的平方和。2. 寻找使下式成立的实数x:4x2/(1-√(1+2x))2 < 2x+93. 直角三角形ABC的斜边BC的长为a,将它分成n等份(n为奇数),令a为从A点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证:tana=4nh/(an2-a).4. 已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC。5. 正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D')。X是对角线AC上任意一点,Y是B'D'上任意一点。a.求XY中点的轨迹;b.求(a)中轨迹上的、并且还满足ZY

4、=2XZ的点Z的轨迹。6. 一个圆锥内有一内接球,又有一圆柱体外切于此圆球,其底面落在圆锥的底面上。令V1为圆锥的体积,V2为圆柱的体积。   (a). 求证:V1不等于V2;   (b). 求V1/V2的最小值;并在此情况下作出圆锥顶角的一般。7. 等腰梯形ABCD,AB平行于DC,BC=AD。令AB=a,CD=c,梯形的高为h。X点在对称轴上并使得角BXC、AXD都是直角。试作出所有这样的X点并计算X到两底的距离;再讨论在什么样的条件下这样的X点确实存在。第3届IMO1. 设a、b是常数,解方程组x+y+z=a;  x2+y2+z2=b2; 

5、 xy=z2并求出若使x、y、z是互不相同的正数,a、b应满足什么条件?2. 设a、b、c是某三角形的边,A是其面积,求证:a2+b2+c2>=4√3A.并求出等号何时成立。 3. 解方程cosnx-sinnx=1,其中n是一个自然数。4. P是三角形ABC内部一点,PA交BC于D,PB交AC于E,PC交AB于F,求证AP/PD,BP/PE,CP/PF中至少有一个不大于2,也至少有一个不小于2。5. 作三角形ABC使得AC=b,AB=c,锐角AMB=a,其中M是线断BC的中点。求证这个三角形存在的充要条件是btan(a/2)<=c

6、时等号成立。6. 三个不共线的点A、B、C,平面p不平行于ABC,并且A、B、C在p的同一侧。在p上任意取三个点A',B',C',A'',B'',C''设分别是边AA',BB',CC'的中点,O是三角形A''B''C''的重心。问,当A',B',C'变化时,O的轨迹是什么?第4届IMO1. 找出具有下列各性质的最小正整数n:它的最后一位数字是6,如果把最后的6去掉并放在最前面所得到的数是原来数的4被。2. 试找出满足下列不等式的所有实数x:√(3-x)-√(x+1)>1/2.3. 正方体ABCDA'B'C'D'(ABCD、A'B'C'D'分别是上

7、下底)。一点x沿着正方形ABCD的边界以方向ABCDA作匀速运动;一点Y以同样的速度沿着正方形B'C'CB的边界以方向B'C'CBB'运动。点X、Y在同一时刻分别从点A、B'开始运动。求线断XY的中点的轨迹。4. 解方程cos2x+cos22x+cos23x=1。5. 在圆K上有三个不同的点A、B、C。试在K上再作出一点D使得这四点所形成的四边形有一个内切圆。6. 一个等腰三角形,设R为其外接圆半径,内切圆半径为r,求证这两个圆的圆心的距离是√(R(R-2r))。7. 求证:正四面体有5个不同的球,每个球都与这六条边或其延长线相切;反过来,如果一

8、个四面体有5个这样的球,则它必然是正四面体。第5届IMO1. 找出下列方程的所有实数根(其中p是实参数): √(x2-p)+2√(x2-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。