集合的基本运算教案1

ID:6576421

大小:62.50 KB

页数:5页

时间:2018-01-18

集合的基本运算教案1_第1页
集合的基本运算教案1_第2页
集合的基本运算教案1_第3页
集合的基本运算教案1_第4页
集合的基本运算教案1_第5页
资源描述:

《集合的基本运算教案1》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、§1.3集合的基本运算教案教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。课型:新授课教学重点:集合的交集与并集、补集的概念;教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;教学过程:一、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题)

2、,引入并集概念。二、新课教学1.并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:A∪B读作:“A并B”即:A∪B={x

3、x∈A,或x∈B}Venn图表示:A∪BABA?说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。1.交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做

4、集合A与B的交集(intersection)。记作:A∩B读作:“A交B”即:A∩B={x

5、∈A,且x∈B}交集的Venn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。拓展:求下列各图中集合A与B的并集与交集ABA(B)ABBABA说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集1.补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。补集:对于全集U的一个子集A,由全

6、集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementaryset),简称为集合A的补集,记作:CUA即:CUA={x

7、x∈U且x∈A}补集的Venn图表示说明:补集的概念必须要有全集的限制2.求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。1.集合基本运算的一些结论:A∩BA,A∩

8、BB,A∩A=A,A∩=,A∩B=B∩AAA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A(CUA)∪A=U,(CUA)∩A=若A∩B=A,则AB,反之也成立若A∪B=B,则AB,反之也成立若x∈(A∩B),则x∈A且x∈B若x∈(A∪B),则x∈A,或x∈B2.课堂练习(1)设A={奇数}、B={偶数},则A∩Z=A,B∩Z=B,A∩B=(2)设A={奇数}、B={偶数},则A∪Z=Z,B∪Z=Z,A∪B=Z一、作业布置:二、已知X={x

9、x2+px+q=0,p2-4q>0},A={1,3,5,

10、7,9},B={1,4,7,10},且,试求p、q;一、集合A={x

11、x2+px-2=0},B={x

12、x2-x+q=0},若AB={-2,0,1},求p、q;二、A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且AB={3,7},求B

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《集合的基本运算教案1》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、§1.3集合的基本运算教案教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。课型:新授课教学重点:集合的交集与并集、补集的概念;教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;教学过程:一、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题)

2、,引入并集概念。二、新课教学1.并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:A∪B读作:“A并B”即:A∪B={x

3、x∈A,或x∈B}Venn图表示:A∪BABA?说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。1.交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做

4、集合A与B的交集(intersection)。记作:A∩B读作:“A交B”即:A∩B={x

5、∈A,且x∈B}交集的Venn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。拓展:求下列各图中集合A与B的并集与交集ABA(B)ABBABA说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集1.补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。补集:对于全集U的一个子集A,由全

6、集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementaryset),简称为集合A的补集,记作:CUA即:CUA={x

7、x∈U且x∈A}补集的Venn图表示说明:补集的概念必须要有全集的限制2.求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。1.集合基本运算的一些结论:A∩BA,A∩

8、BB,A∩A=A,A∩=,A∩B=B∩AAA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A(CUA)∪A=U,(CUA)∩A=若A∩B=A,则AB,反之也成立若A∪B=B,则AB,反之也成立若x∈(A∩B),则x∈A且x∈B若x∈(A∪B),则x∈A,或x∈B2.课堂练习(1)设A={奇数}、B={偶数},则A∩Z=A,B∩Z=B,A∩B=(2)设A={奇数}、B={偶数},则A∪Z=Z,B∪Z=Z,A∪B=Z一、作业布置:二、已知X={x

9、x2+px+q=0,p2-4q>0},A={1,3,5,

10、7,9},B={1,4,7,10},且,试求p、q;一、集合A={x

11、x2+px-2=0},B={x

12、x2-x+q=0},若AB={-2,0,1},求p、q;二、A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且AB={3,7},求B

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭