配方法解一元二次方程教案

配方法解一元二次方程教案

ID:6356126

大小:759.00 KB

页数:9页

时间:2018-01-11

配方法解一元二次方程教案_第1页
配方法解一元二次方程教案_第2页
配方法解一元二次方程教案_第3页
配方法解一元二次方程教案_第4页
配方法解一元二次方程教案_第5页
资源描述:

《配方法解一元二次方程教案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、配方法解一元二次方程授课人:薛晓波一、教材分析方程是刻画现实世界中数量关系的一个有效数学模型,应用比较广泛,而从实际问题中抽象出方程,并求出方程的解是解决问题的关键。配方法既是解一元二次方程的一种重要方法,同时也是推导公式法的基础。配方法又是初中数学的重要内容,在二次根式、代数式的变形及二次函数中都有广泛应用。二、目标分析1.知识与技能:理解配方法的意义,会用配方法解二次项系数为1的一元二次方程;2.过程与方法:通过探索配方法的过程,让学生体会转化的数学思想方法;3.情感态度价值观:学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,

2、增强学生学习数学的兴趣。教学重点:运用配方法解二次项系数为1的一元二次方程。教学难点:发现并理解配方的方法。三、教学过程设计环节一:创设情境,引出新知在知识引入阶段,创设了一个实际问题的情境,将学生放置在实际问题的背景下,既让学生感受到生活中处处有数学,又有利于激发学生的主动性和求知欲。环节二:对比研究,探索新知本节课力求在学生已有知识和经验的基础之上,让学生通过观察、比较、转化、探究,自主发现解决问题的方法和规律,理解并掌握配方法。因此,我以问题为引导,由浅入深,层层递进地设置了4个问题:问题1:我们会解什么样的一元二次方程?举例说明用问题

3、唤起学生的回忆,明确我们现在会解的方程的特点是:等号左边是一个完全平方式,右边是一个非负常数,即,运用直接开平方法可以解。这是后面配方转化的目标,也是对比研究的基础。问题2:你会用直接开平方法解下列方程吗?设置四道方程:,启发学生逆向思考问题的思维方式,将方程转化成的形式,从而求得方程的解。通过这一过程,学生发现能用直接开平方法求解的方程都可以转化成一般形式,一般形式的方程也能逆向转化为可以直接开平方的形式,所以总结出解一元二次方程的基本思路是将形式转化为的形式,而怎样转化就成为探索的方向,如何进行合理的转化则是下一步探究活动的核心。问题3:

4、探索一元二次方程的求解过程和方法首先复习因式分解中的完全平方公式接下来做一做:通过做一做引发学生思考,在二次项系数为1的完全平方公式左边,常数项与一次项系数具有怎样的关系。以启发学生进行探究的形式展开,以小组合作探究的方式总结,目的是使学生能够体会并理解完全平方公式的特点,从而达到对配方法的完全理解,实现教学重点的理解和教学难点的突破。四个公式中一次项系数分别是正偶数、负偶数、正奇数、负分数,体现了从简单到复杂的思维过程,同时也为下一步解一元二次方程打下基础。学生总结出规律后,教师要验证规律的正确性,然后通过完全平方公式给出证明,体现从特殊到

5、一般的思维过程以及数学的严谨性。通过对例1的讲解,使学生明确对二次项系数是1的一元二次方程,配方时要注意在方程两边都加上一次项系数一半的平方,同时规范配方法解方程时的一般步骤。此时,教师归纳:通过配成完全平方形式来解一元二次方程的方法,叫做配方法。问题4:配方的目的是什么?配方时应注意什么?在完成这一系列探究活动后,教师提出问题引导学生回顾探究过程,进行阶段性小结。明确配方的目的是通过配成完全平方形式来解方程。对二次项系数是1的一元二次方程,配方时要注意在方程两边都加上一次项系数一半的平方。环节三:回归生活,应用新知在此基础上,解决创设情境中

6、提出的实际问题,既体现了一元二次方程在现实生活中的应用,同时也让学生理解一元二次方程的解并不一定是实际问题的解,在做题过程中要注意选择符合实际的解。环节四:随堂练习,巩固新知针对学生在解题过程中容易出现的几个问题,我设置了练习1。练习1:认真观察下面方程的解法是否正确.练习2:用配方法解方程:(1);(2);(3) 师生共同关注一元二次方程中一次项系数不同时,对于配方规律的进一步运用。通过解一次项系数分别是正偶数、负奇数、负分数的一元二次方程,层层深入地加深对配方规律的认识。三道练习中设置了未知数是t和y的一元二次方程,目的是使学生认识到不是

7、只有x可以作为方程的未知数,在解题过程中一定要注意细节,改变学生的思维定势问题,巩固利用配方法解方程的基本技能。环节五:小结梳理,分层作业教师归纳配方法解一元二次方程的基本思路、步骤及注意事项,巩固对课堂知识的理解和掌握,同时进一步体会解一元二次方程时降次的基本策略和转化的思想。最后,教师布置作业:(1)基础题:教科书P26——1,2(2)思考题:用配方法解方程。分层布置作业,既巩固本节主要内容,又有让学有余力的学生有思考和提升的空间。思考题二次项系数不是1,但是它的结构特征也符合完全平方式的前两项的形式,通过此题考验学生是否真正理解配方法,

8、并能根据题目特点灵活运用配方法求解。同时也为下节课深入研究配方法做好准备。四、板书设计:23.2.3一元二次方程的解法——配方法是(直接开平方)练习一元二次方程一元

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。