资源描述:
《不等式的证明方法及其推广.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、不等式的证明方法及其推广1资料内容仅供参考,如有不当或者侵权,请联系本人改正或者删除。不等式的证明方法及其推广摘要:在初等代数和高等代数中,不等式的证明都占有举足轻重的位置。初等代数中介绍了许多具体的而且相当有灵活性和技巧性的证明方法,例如换元法、放缩法等研究方法;而高等代数中,能够利用的方法更加灵活技巧。我们能够利用典型的柯西不等式的结论来证明类似的不等式;除此还能够利用导数,微分中值定理,泰勒公式,积分中值定理等有关的知识来证明不等式;在正定的情况下,也能够用判别式法;掌握了定积分化为重积分的内容之后,对于某类不等式,也能够将定积分化为重积分,再证明所求的不等式。由此我们能够
2、看到,不等式的求解证明方法并不唯一,可是初等数学里的不等式,都能够用高等数学的知识来解决,解答更为简洁。因此,高等数学对初等数学的教学和学习具有重要的指导意义。本文归纳和总结了一些求解证明不等式的方法与技巧,突出了不等式的基本思想和基本方法,便于更好地了解各部分的内在联系,从总体上把握证明不等式的思想方法;注重对一些著名不等式的推广及应用的介绍。关键词:不等式;证明方法1引言1.1研究的背景首先,我们要从整个数学,特别是现代数学在21世纪变得更加重要来认识不等式的重要性。美国《数学评论》新的分类中,一级分类已达到63个,主题分类已超过5600多个,说明现代数学已形成庞大的科学体系
3、,而且仍在不断向纵深化发展。它在自然科学、工程技术、国防、国民经济(如金融、管理等)和人文社会科学(如语言学、心理学、历史、文学艺术等)以至我们的日常生活中的应用都在不断深化和发展。它为我们提供了理解信息世界的一种强有力的工具,它也是新世纪公民的文化和科学素质的重要组成部分。而不等式在数学中又处于独特的地位。美2资料内容仅供参考,如有不当或者侵权,请联系本人改正或者删除。国《数学评论》在为匡继昌的《常见不等式》第2版写的长篇评论中指出:”不等式的重要性,无论怎么强调都不会过分。”这说明不等式依然是十分活跃又富有吸引力的研究领域。再者不等式的求解和证明一直是高考的热点和难点。近年来
4、高考虽然淡化了单纯的不等式证明的证明题。可是以能力立意的、与证明有关的综合题却频繁出现。常常与函数、数列、三角等综合,考查逻辑推理能力。是高考考查的一项重要内容。而要解决这一点的关键在于掌握常见方法,理解不等式证明中的数学思想,熟练地运用性质和基本不等式。因此,本文归纳和总结了一些求解证明不等式的方法与技巧,突出了不等式的基本思想和基本方法,便于更好地了解各部分的内在联系,从总体上把握不等式的思想方法;注重对一些著名不等式的推广及应用的介绍,以便更好地理解和运用。1.2文献综述数学问题(猜想)的重要性先哲们已有过精辟的阐述。的确,形式优美、新颖、内涵丰富的不等式问题,不但丰富了我
5、们的研究素材,而且孕育了新思想、新方法的胚芽。当探索者在艰难的跋涉中感到困倦和乏味时,它就会突然放出奇光异彩,照亮一片天地。人们之因此能孜孜不倦地向未知领域探求,也正是问题那充满诱惑力的深情呼唤。新的东西能够刷新我们的视野。虽然它一开始可能是含糊的、幼稚的、脆弱的,可是只要视野中能映出,那么离抓住它的真谛的日子一定不会遥远了!由于不等式的多样性,各有各的证明特色,因此我阅读许多文献。许小华的《不等式证明的常见方法》是我参考的第一篇文献。文中介绍了一些常见的证明方法及其在数学竞赛中的应用:分析和综合法、数学归纳法、反证法、函数法、判别式法。由此可知不等式在数学中的地位十分重要,而证
6、明不等式的方法和技巧也很多。因此要掌握好不等式证明,除了要认真理解并能熟练运用不等式的基本性质外,还应当注意观察相3资料内容仅供参考,如有不当或者侵权,请联系本人改正或者删除。关条件与数学其它知识点的联系,充分利用有关知识解决不等式证明问题。陈初良的《不等式证明的两种巧法》就介绍了两种技巧性较高的不等式证明方法:化归函数法、放缩法。本文对这两种方法的介绍非常的精彩。周再禹在《不等式证题中调整法的应用》也给大家展示了不等式证明的一种独特的方法——调整法。而董琳为了拓宽视野,则在《几种证明不等式的妙法》一文中经过实例,介绍了几种切实可行的方法:放缩法证明不等式、反证法、函数法、最值法
7、。除此不少问题还不止用一种方法而需要用几种方法综合使用才能解决。因此翁耀明善于抓住不等式的特点,突破旧例,在《运用概率方法证明某些数学不等式》一文中利用函数的凹凸性,再结合概率中数学期望的不等式性质,恰当地构造一个概率分布密度来证明一些特殊的不等式。我们知道任何知识体系都不是孤立的,它们相互联系相互渗透,而不同体系的”知识交汇”更能有效地培养学生的综合思维能力。例如:数列与不等式是函数内容的后续知识板块,与函数一样,也都是历年高考的热点。由于在知识网络交汇点设计试题这一命题思想的