人教A版高中数学必修第二册余弦定理、正弦定理第2课时正弦定理 导学案(2).docx

人教A版高中数学必修第二册余弦定理、正弦定理第2课时正弦定理 导学案(2).docx

ID:60942242

大小:128.69 KB

页数:10页

时间:2021-01-06

人教A版高中数学必修第二册余弦定理、正弦定理第2课时正弦定理 导学案(2).docx_第1页
人教A版高中数学必修第二册余弦定理、正弦定理第2课时正弦定理 导学案(2).docx_第2页
人教A版高中数学必修第二册余弦定理、正弦定理第2课时正弦定理 导学案(2).docx_第3页
人教A版高中数学必修第二册余弦定理、正弦定理第2课时正弦定理 导学案(2).docx_第4页
人教A版高中数学必修第二册余弦定理、正弦定理第2课时正弦定理 导学案(2).docx_第5页
资源描述:

《人教A版高中数学必修第二册余弦定理、正弦定理第2课时正弦定理 导学案(2).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、余弦定理、正弦定理(人教A版)第2课时正弦定理1、通过对任意三角形边长和角度关系的探索,掌握正弦定理,并能解决一些简单的问题;2、通过对特殊三角形边角间数量关系的研究,发现正弦定理,初步学会运用由特殊到一般的思想方法发现数学规律;3、通过参与、思考、交流,体验正弦定理的发现过程,逐步培养探索精神和创新意识;通过对正弦函数的学习体会数学的对称美,和谐美.1.数学抽象:正弦定理及其变形、三角形面积公式;2.逻辑推理:用正弦定理及其变形解决相关问题;3.数学运算:解三角形;4.数学建模:通过对特殊三角形边

2、角间数量关系的研究,发现正弦定理,使学生学会运用由特殊到一般的思想方法发现数学规律.重点:正弦定理的内容,对正弦定理的证明及基本运用;难点:正弦定理的探索及证明.一、预习导入阅读课本45-48页,填写。1.正弦定理在一个三角形中,各边和它所对角的正弦之比相等,即___________________=2R,其中R是___________________.2.正弦定理的变形(1)a∶b∶c=___________________;(2)a=2RsinA,b=2RsinB,_______________

3、____;(3)sinA=,sinB=,___________________;(4)asinB=bsinA,bsinC=csinB,___________________.(5)===.3.正弦定理应用解三角形(1)已知三角形的两角及任一边,求其他两边和一角;(2)已知三角形的两边和其中一边对角,求另一边的对角(从而进一步求出其他的边和角).4、三角形的面积公式(1)S=a·ha(ha表示a边上的高).(2)S=absinC=bcsinA=___________________.1.判断下列命题是

4、否正确.(正确的打“√”,错误的打“×”)(1)正弦定理只适用于锐角三角形(  )(2)在△ABC中,等式bsinA=asinB总能成立(  )(3)公式S=absinC适合求任意三角形的面积(  )(4)在三角形中已知两边和一角就能求三角形的面积(  )2.在△ABC中,已知a=2,b=3,C=120°,则S△ABC=(  )A.  B.    C.    D.33.在△ABC中,三个内角A,B,C的对边分别为a,b,c,若=,则角B的大小为(  )A.    B.    C.    D.4.△A

5、BC中,a=,b=,sinB=,则符合条件的三角形有________个.题型一已知两角及一边解三角形例1 在△ABC中,A=30°,C=105°,a=10,求b,c,B.跟踪训练一1.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知A=105°,C=45°,c=,则b=(  )A.1   B.C.D.22.在△ABC中,若tanA=,C=150°,BC=1,则AB=________. 题型二已知两边及一边的对角解三角形例2 在△ABC中,A=45°,c=,a=2,求b,B,C.跟踪训练二1

6、.△ABC中,B=45°,b=,a=1,则角A=________.2.在△ABC中,a=1,b=,A=30°,求边c的长.题型三正弦定理在边角互化中的应用例3在△ABC中,已知b+c=1,C=45°,B=30°,则b=________.例4在△ABC中,==,试判断△ABC的形状;跟踪训练三1、在△ABC中,若acosA=bsinB,则sinAcosA+cos2B等于(  )A.1B.C.-1D.-2.在△ABC中,acos=bcos,判断△ABC的形状.题型四与三角形面积有关问题例5 在△ABC中

7、,已知B=30°,AB=2,AC=2,求△ABC的面积. 跟踪训练四1.已知△ABC的面积为,且b=2,c=,则A的大小为(  )A.60°或120°    B.60°C.120°D.30°或150°2.在钝角△ABC中,角A,B,C的对边分别为a,b,c,且a=1,A=30°,c=,则△ABC的面积为________.1.在中,角,,所对的边分别为,,,,,=,则=()A.B.C.D.2.在锐角中ΔABC,角A,B所对的边长分别为a,b.若2asinB=3b,则角A等于()A.π12B.π6C.π

8、4D.π33.的内角,,的对边分别为,,,已知,,,则的面积为()A.B.C.D.4.在ΔABC中,角A、B、C的对边分别为a,b,c,若2ccosC=bcosA+acosB,则∠C的值为()A.2π3B.5π6C.π6D.π35.在ΔABC中,的对边分别为,若,,,则角_____.6.在△ABC中角A,B,C所对的边分别是a,b,c,b=2,c=1,cosB=34.(1)求sinC的值;(2)求△ABC的面积.答案小试牛刀1.(1)×(2)√(3)√(4)√2.B.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。