备战2021届新高考数学二轮复习易错题10 立体几何(解析版).docx

备战2021届新高考数学二轮复习易错题10 立体几何(解析版).docx

ID:60745990

大小:1.80 MB

页数:41页

时间:2020-12-13

备战2021届新高考数学二轮复习易错题10 立体几何(解析版).docx_第1页
备战2021届新高考数学二轮复习易错题10 立体几何(解析版).docx_第2页
备战2021届新高考数学二轮复习易错题10 立体几何(解析版).docx_第3页
备战2021届新高考数学二轮复习易错题10 立体几何(解析版).docx_第4页
备战2021届新高考数学二轮复习易错题10 立体几何(解析版).docx_第5页
资源描述:

《备战2021届新高考数学二轮复习易错题10 立体几何(解析版).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、易错点10立体几何备战2021届新高考数学二轮复习易错题【典例分析】例1(2020年普通高等学校招生全国统一考试数学)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°【答案】B【解析】【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定

2、义判定有关截线的关系,根据点处的纬度,计算出晷针与点处的水平面所成角.【详解】画出截面图如下图所示,其中是赤道所在平面的截线;是点处的水平面的截线,依题意可知;是晷针所在直线.是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知、根据线面垂直的定义可得..由于,所以,由于,所以,也即晷针与点处的水平面所成角为.故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.例2(2020年普通高等学校招生全国统一考试数学)已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以为球

3、心,为半径的球面与侧面BCC1B1的交线长为________.【答案】.【解析】【分析】根据已知条件易得,侧面,可得侧面与球面的交线上的点到的距离为,可得侧面与球面的交线是扇形的弧,再根据弧长公式可求得结果.【详解】如图:取的中点为,的中点为,的中点为,因为60°,直四棱柱的棱长均为2,所以△为等边三角形,所以,,又四棱柱为直四棱柱,所以平面,所以,因为,所以侧面,设为侧面与球面的交线上的点,则,因为球的半径为,,所以,所以侧面与球面的交线上的点到的距离为,因为,所以侧面与球面的交线是扇形的弧,因为,所以,所以根据弧长公式可得.故答案为:.【点睛】本题考查了直棱柱的结构特征,考查了

4、直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.例3(2020年普通高等学校招生全国统一考试数学)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【答案】(1)证明见解析;(2).【解析】【分析】(1)利用线面垂直的判定定理证得平面,利用线面平行的判定定理以及性质定理,证得,从而得到平面;(2)根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点,之后求得平面的法向量以及向量的坐标

5、,求得的最大值,即为直线与平面所成角的正弦值的最大值.【详解】(1)证明:在正方形中,,因为平面,平面,所以平面,又因为平面,平面平面,所以,因为在四棱锥中,底面是正方形,所以且平面,所以因为所以平面;(2)如图建立空间直角坐标系,因为,则有,设,则有,设平面的法向量为,则,即,令,则,所以平面的一个法向量为,则根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于,当且仅当时取等号,所以直线与平面所成角的正弦值的最大值为.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定和性质,线面垂直的判定和性质,

6、利用空间向量求线面角,利用基本不等式求最值,属于中档题目.【易错警示】易错点1.柱、锥、台结构特征判断中的误区【例1】如图所示,几何体的正确说法的序号为________.(1)这是一个六面体;(2)这是一个四棱台;(3)这是一个四棱柱;(4)此几何体可由三棱柱截去一个三棱柱得到;(5)此几何体可由四棱柱截去一个三棱柱得到.【错解】 (1)正确,因为有六个面,属于六面体的范围;(2)错误,因为侧棱的延长线不能交于一点,所以不正确;(3)正确,如果把几何体放倒就会发现是一个四棱柱;(4)(5)都错误.【错因】忽视侧棱的延长线不能交于一点,直观感觉是棱台,而不注意逻辑推理.【正解】(4)

7、(5)如图,都正确。正确答案:(1)(3)(4)(5)易错点2.解答平面图形直观图还原问题的易错点【例2】一梯形的直观图是一个如图所示的等腰梯形,且梯形OA′B′C′的面积为,则原梯形的面积为(  )A.2  B.C.2D.4【错解】OC的长度倍,故其面积是梯形OA′B′C′面积的倍,梯形OA′B′C′的面积为,所以原梯形的面积是2.【错因】原梯形与直观图中梯形上、下底边的长度一样,但高的长度不一样.原梯形的高OC是直观图中OC′的长度的2倍,OC′长度是直观图中梯形

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。