最新圆锥曲线复习_课件.ppt

最新圆锥曲线复习_课件.ppt

ID:60355014

大小:4.17 MB

页数:72页

时间:2020-12-05

最新圆锥曲线复习_课件.ppt_第1页
最新圆锥曲线复习_课件.ppt_第2页
最新圆锥曲线复习_课件.ppt_第3页
最新圆锥曲线复习_课件.ppt_第4页
最新圆锥曲线复习_课件.ppt_第5页
资源描述:

《最新圆锥曲线复习_课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、安丘市青云学府二数学组谢大强圆锥曲线复习复习专题__________________________________________________1.椭圆的定义平面内到两定点F1、F2距离之和为常数2a(①)的点的轨迹叫椭圆.有

2、PF1

3、+

4、PF2

5、=2a.在定义中,当②时,表示线段F1F2;当③时,不表示任何图形.2a>

6、F1F2

7、2a=

8、F1F2

9、2a<

10、F1F2

11、__________________________________________________2.椭圆的标准方程(1)=1(a>b>0),其中a2

12、=b2+c2,焦点坐标为④.(2)=1(a>b>0),其中a2=b2+c2,焦点坐标为⑤.F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)__________________________________________________4.椭圆=1(a>b>0)的几何性质(1)范围:

13、x

14、≤a,

15、y

16、≤b,椭圆在一个矩形区域内;(2)对称性:对称轴x=0,y=0,对称中心O(0,0);一般规律:椭圆有两条对称轴,它们分别是两焦点的连线及两焦点连线段的中垂线._______________________

17、___________________________(3)顶点:A1(-a,0),A2(a,0),B1(0,-b),B2(0,b),长轴长

18、A1A2

19、=⑧,短轴长

20、B1B2

21、=⑨;一般规律:椭圆都有四个顶点,顶点是曲线与它本身的对称轴的交点.(4)离心率:e=⑩(0<e<1),椭圆的离心率在内,离心率确定了椭圆的形状(扁圆状态).当离心率越接近于时,椭圆越圆;当离心率越接近于时,椭圆越扁平.2a2b11(0,1)130121________________________________________________

22、__5.双曲线的定义平面内到两定点F1、F2的距离之差的绝对值为常数2a(且①)的点的轨迹叫双曲线,有

23、

24、MF1

25、-

26、MF2

27、

28、=2a.在定义中,当②时表示两条射线,当③时,不表示任何图形.0<2a<

29、F1F2

30、2a=

31、F1F2

32、2a>

33、F1F2

34、__________________________________________________6.双曲线的标准方程(1)焦点在x轴上的双曲线:④,其中⑤,焦点坐标为F1(-c,0),F2(c,0);(2)焦点在y轴上的双曲线:⑥,其中c2=a2+b2,焦点坐标为F1(0,

35、-c),F2(0,c).c2=a2+b2__________________________________________________7.双曲线(a>0,b>0)的几何性质(1)范围:⑨,y∈R;(2)对称性:对称轴x=0,y=0,对称中心(0,0);一般规律:双曲线有两条对称轴,它们分别是两焦点连线及两焦点连线段的中垂线.

36、x

37、≥a__________________________________________________(3)顶点:A1(-a,0),A2(a,0);实轴长⑩,虚轴长;一般规律:双曲线都有

38、两个顶点,顶点是曲线与它本身的对称轴的交点.(4)离心率e=();双曲线的离心率在(1,+∞)内,离心率确定了双曲线的形状.(5)渐近线:双曲线的两条渐近线方程为;双曲线的两条渐近线方程为.

39、A1A2

40、=2a11

41、B1B2

42、=2b12e>113y=±x14y=±x__________________________________________________双曲线有两条渐近线,他们的交点就是双曲线的中心;焦点到渐近线的距离等于虚半轴长b;公用渐近线的两条双曲线可能是:a.共轭双曲线;b.放大的双曲线;c.共轭放大或放

43、大后共轭的双曲线.已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中的“1”为“0”就得到两条渐近线方程,即方程就是双曲线的两条渐近线方程.__________________________________________________8.抛物线的定义平面内与一定点F和一条定直线l(Fl)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的①.2.抛物线的标准方程与几何性质准线__________________________________________________标准

44、方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形顶点(0,0)(0,0)(0,0)(0,0)对称轴②.x轴y轴③.焦点F(,0)④.⑤.F(0,-)x轴y轴F(-,0)F(0,)____________________________________________

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。