2015-2017立体几何全国卷高考真题.doc

2015-2017立体几何全国卷高考真题.doc

ID:59513595

大小:761.50 KB

页数:10页

时间:2020-11-04

2015-2017立体几何全国卷高考真题.doc_第1页
2015-2017立体几何全国卷高考真题.doc_第2页
2015-2017立体几何全国卷高考真题.doc_第3页
2015-2017立体几何全国卷高考真题.doc_第4页
2015-2017立体几何全国卷高考真题.doc_第5页
资源描述:

《2015-2017立体几何全国卷高考真题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2015-2017立体几何高考真题1、(2015年1卷6题)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有()(A)14斛(B)22斛(C)36斛(D)66斛2、(2015年1卷11题)圆柱被一个平面截去一部分后与半球(半径为r)组成一

2、个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20,则r=()(A)1(B)2(C)4(D)83、(2015年1卷18题)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE与直线CF所成角的余弦值.4、(2015年2卷6题)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.5、(2015年2卷9题)

3、已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π6、(2015年2卷19题)(本题满分12分)如图,长方体中,,,,点,分别在,上,.过点,的平面与此长方体的面相交,交线围成一个正方形.DD1C1A1EFABCB1(Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线与平面所成角的正弦值.7、(2016年1卷6题)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积

4、是(A)(B)(C)(D)8、(2016年1卷11题)平面过正方体ABCD-A1B1C1D1的顶点A,//平面CB1D1,平面ABCD=m,平面ABB1A1=n,则m、n所成角的正弦值为(A)(B)(C)(D)9、(2016年1卷18题)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,,且二面角D-AF-E与二面角C-BE-F都是.(I)证明:平面ABEF平面EFDC;(II)求二面角E-BC-A的余弦值.10、(2016年2卷6题)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A)2

5、0π(B)24π(C)28π(D)32π11、(2016年2卷14题),是两个平面,m,n是两条线,有下列四个命题:①如果,,,那么.②如果,,那么.③如果,,那么.④如果,,那么m与所成的角和n与所成的角相等.其中正确的命题有 .(填写所有正确命题的编号)12(2016年2卷19题)(本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,,,点E,F分别在AD,CD上,,EF交BD于点H.将△DEF沿EF折到△的位置.(I)证明:平面ABCD;(II)求二面角的正弦值.13、(2016年3卷9题)如图,网格纸上小正方形的边长为1

6、,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)(B)(C)90(D)8114、(2016年3卷10题)在封闭的直三棱柱内有一个体积为的球,若,,,,则的最大值是()(A)4π(B)(C)6π(D)15、(2016年3卷19题)(本小题满分12分)如图,四棱锥中,地面,,,,为线段上一点,,为的中点.(I)证明平面;(II)求直线与平面所成角的正弦值.16、(2017年1卷7题)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,

7、这些梯形的面积之和为A.B.C.D.17、(2017年1卷16题)如图,圆形纸片的圆心为,半径为,该纸片上的等边三角形的中心为,、、为元上的点,,,分别是一,,为底边的等腰三角形,沿虚线剪开后,分别以,,为折痕折起,,,使得,,重合,得到三棱锥.当的边长变化时,所得三棱锥体积(单位:)的最大值为_______.18、(2017年1卷18题)如图,在四棱锥中,中,且.(1)证明:平面平面;(2)若,,求二面角的余弦值.19、(2017年2卷4题)如图,网格纸上小正方形的边长为1,学科&网粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱

8、截去一部分所得,则该几何体的体积为()A.B.C.D.20、(2017年2卷10题)已知直三棱柱中,,,,则异面直线与所成角的余弦值为()A.B.C.D.21、(2017年2卷1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。