武汉工程大学考研《线性代数》考试大纲.doc

武汉工程大学考研《线性代数》考试大纲.doc

ID:59153144

大小:15.50 KB

页数:3页

时间:2020-09-11

武汉工程大学考研《线性代数》考试大纲.doc_第1页
武汉工程大学考研《线性代数》考试大纲.doc_第2页
武汉工程大学考研《线性代数》考试大纲.doc_第3页
资源描述:

《武汉工程大学考研《线性代数》考试大纲.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、武汉工程大学考研《线性代数》考试大纲  一、行列式  考试内容  行列式的概念和基本性质  行列式按行(列)展开定理  考试要求  1.了解行列式的概念,掌握行列式的性质.  2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.  二、矩阵  考试内容  矩阵的概念  矩阵的线性运算  矩阵的乘法  方阵的幂  方阵乘积的行列式  矩阵的转置  逆矩阵的概念和性质  矩阵可逆的充分必要条件  伴随矩阵  矩阵的初等变换  初等矩阵  矩阵的秩  矩阵的等价  分块矩阵及其运算  考试要求  1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以

2、及它们的性质.  2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.  3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.  4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.  5.了解分块矩阵及其运算.  三、向量  考试内容  向量的概念  向量的线性组合和线性表示  向量组的线性相关与线性无关  向量组的极大线性无关组  等价向量组  向量组的秩  向量组的秩与矩阵的秩之间的关系  向量的内积  线性无关向量组的的

3、正交规范化方法  考试要求  1.理解维向量、向量的线性组合与线性表示的概念.  2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.  3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.  4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.  5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.  四、线性方程组  考试内容  线性方程组的克莱姆(Cramer)法则  齐次线性方程组有非零解的充分必要条件  非齐次线性方程组有解的充分必要条件  线性方程组解的性质和解的结构  齐

4、次线性方程组的基础解系和通解  非齐次线性方程组的通解  考试要求  1.会用克莱姆法则.  2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.  3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.  4.理解非齐次线性方程组的解的结构及通解的概念.  5.会用初等行变换求解线性方程组.  五、矩阵的特征值及特征向量  考试内容  矩阵的特征值和特征向量的概念、性质  相似矩阵的概念及性质  矩阵可相似对角化的充分必要条件及相似对角矩阵  实对称矩阵的特征值、特征向量及其相似对角矩阵  考试要求  1.理解矩阵的特征值和特征向

5、量的概念及性质,会求矩阵特征值和特征向量.  2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.  3.了解实对称矩阵的特征值和特征向量的性质.  六、二次型  考试内容  二次型及其矩阵表示  合同变换与合同矩阵  二次型的秩  惯性定理  二次型的标准形和规范形  用正交变换和配方法化二次型为标准形  考试要求  1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.  2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形。小提示:目前本科生就业市场竞争激烈,就业主体是研究

6、生,在如今考研竞争日渐激烈的情况下,我们想要不在考研大军中变成分母,我们需要:早开始+好计划+正确的复习思路+好的辅导班(如果经济条件允许的情况下)。2017考研开始准备复习啦,早起的鸟儿有虫吃,一分耕耘一分收获。加油!

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。