欢迎来到天天文库
浏览记录
ID:58883299
大小:105.50 KB
页数:6页
时间:2020-09-19
《新课标全国卷文数试题模板..doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、.绝密*启用前2012年普通高等学校招生全国统一考试文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的、号填写在本试卷和答题卡相应位置上。2.问答第Ⅰ卷时。选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动.用橡皮擦干净后,再选涂其它答案标号。写在本试卷上无效.3.回答第Ⅱ卷时。将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。(1)已知集合A={x
2、x2-x-2<0},B={x
3、-14、(A)AB(B)BA(C)A=B(D)A∩B=Æ(2)复数z=的共轭复数是(A)2+i(B)2-i(C)-1+i(D)-1-i(3)在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为(A)-1(B)0(C)(D)1(4)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为()(A)(B)(C)(D)(5)已知正三角形ABC的顶点A(1,1),B(1,5、3),顶点C在第一象限,若点(x,y)在△ABC部,则z=-x+y的取值围是(A)(1-,2)(B)(0,2)(C)(-1,2)(D)(0,1+)(6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,aN,输出A,B,则(A)A+B为a1,a2,…,aN的和(B)为a1,a2,…,aN的算术平均数(C)A和B分别是a1,a2,…,aN中最大的数和最小的数(D)A和B分别是a1,a2,…,aN中最小的数和最大的数[来源:学,科,网]....开始A=xB=xx>A否输出A,B是输入N,a1,a2,…,aN结束x6、7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18....(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为(A)π(B)4π(C)4π(D)6π(9)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=(A)(B)(C)(D)(10)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,7、AB8、=4,则C的实轴长为(A)(B)2(C)4(D)8(11)当09、)(B)(,1)(C)(1,)(D)(,2)(12)数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为(A)3690(B)3660(C)1845(D)1830第Ⅱ卷本卷包括必考题和选考题两部分。第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答。二.填空题:本大题共4小题,每小题5分。(13)曲线y=x(3lnx+1)在点(1,1)处的切线方程为________(14)等比数列{an}的前n项和为Sn,若S3+3S2=0,则公比q=_______(15)已知向量a,b夹角为45°,且10、a11、=1,12、2a-b13、=,则14、b15、=.16、...(16)设函数f(x)=的最大值为M,最小值为m,则M+m=____三、解答题:解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分12分)已知a,b,c分别为△ABC三个角A,B,C的对边,c=asinC-ccosA(1)求A(2)若a=2,△ABC的面积为,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整17、理得下表:日需求量n14151617181920频数10201616151310(i)假设花店在这100天每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中
4、(A)AB(B)BA(C)A=B(D)A∩B=Æ(2)复数z=的共轭复数是(A)2+i(B)2-i(C)-1+i(D)-1-i(3)在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为(A)-1(B)0(C)(D)1(4)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为()(A)(B)(C)(D)(5)已知正三角形ABC的顶点A(1,1),B(1,
5、3),顶点C在第一象限,若点(x,y)在△ABC部,则z=-x+y的取值围是(A)(1-,2)(B)(0,2)(C)(-1,2)(D)(0,1+)(6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,aN,输出A,B,则(A)A+B为a1,a2,…,aN的和(B)为a1,a2,…,aN的算术平均数(C)A和B分别是a1,a2,…,aN中最大的数和最小的数(D)A和B分别是a1,a2,…,aN中最小的数和最大的数[来源:学,科,网]....开始A=xB=xx>A否输出A,B是输入N,a1,a2,…,aN结束x6、7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18....(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为(A)π(B)4π(C)4π(D)6π(9)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=(A)(B)(C)(D)(10)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,7、AB8、=4,则C的实轴长为(A)(B)2(C)4(D)8(11)当09、)(B)(,1)(C)(1,)(D)(,2)(12)数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为(A)3690(B)3660(C)1845(D)1830第Ⅱ卷本卷包括必考题和选考题两部分。第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答。二.填空题:本大题共4小题,每小题5分。(13)曲线y=x(3lnx+1)在点(1,1)处的切线方程为________(14)等比数列{an}的前n项和为Sn,若S3+3S2=0,则公比q=_______(15)已知向量a,b夹角为45°,且10、a11、=1,12、2a-b13、=,则14、b15、=.16、...(16)设函数f(x)=的最大值为M,最小值为m,则M+m=____三、解答题:解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分12分)已知a,b,c分别为△ABC三个角A,B,C的对边,c=asinC-ccosA(1)求A(2)若a=2,△ABC的面积为,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整17、理得下表:日需求量n14151617181920频数10201616151310(i)假设花店在这100天每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中
6、7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18....(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为(A)π(B)4π(C)4π(D)6π(9)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=(A)(B)(C)(D)(10)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,
7、AB
8、=4,则C的实轴长为(A)(B)2(C)4(D)8(11)当09、)(B)(,1)(C)(1,)(D)(,2)(12)数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为(A)3690(B)3660(C)1845(D)1830第Ⅱ卷本卷包括必考题和选考题两部分。第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答。二.填空题:本大题共4小题,每小题5分。(13)曲线y=x(3lnx+1)在点(1,1)处的切线方程为________(14)等比数列{an}的前n项和为Sn,若S3+3S2=0,则公比q=_______(15)已知向量a,b夹角为45°,且10、a11、=1,12、2a-b13、=,则14、b15、=.16、...(16)设函数f(x)=的最大值为M,最小值为m,则M+m=____三、解答题:解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分12分)已知a,b,c分别为△ABC三个角A,B,C的对边,c=asinC-ccosA(1)求A(2)若a=2,△ABC的面积为,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整17、理得下表:日需求量n14151617181920频数10201616151310(i)假设花店在这100天每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中
9、)(B)(,1)(C)(1,)(D)(,2)(12)数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为(A)3690(B)3660(C)1845(D)1830第Ⅱ卷本卷包括必考题和选考题两部分。第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答。二.填空题:本大题共4小题,每小题5分。(13)曲线y=x(3lnx+1)在点(1,1)处的切线方程为________(14)等比数列{an}的前n项和为Sn,若S3+3S2=0,则公比q=_______(15)已知向量a,b夹角为45°,且
10、a
11、=1,
12、2a-b
13、=,则
14、b
15、=.
16、...(16)设函数f(x)=的最大值为M,最小值为m,则M+m=____三、解答题:解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分12分)已知a,b,c分别为△ABC三个角A,B,C的对边,c=asinC-ccosA(1)求A(2)若a=2,△ABC的面积为,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整
17、理得下表:日需求量n14151617181920频数10201616151310(i)假设花店在这100天每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中
此文档下载收益归作者所有