3、是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业 年后需要更新设备. 6.如图,动物园要建造一面靠墙的两间相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m.(1)用宽x(单位:m)表示所建造的两间熊猫居室的面积y(单位:m2);(2)怎么设计才能使所建造的熊猫居室面积最大?并求出每间熊猫居室的最大面积?7.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(单位:μg)与时间t(单位:h
4、)之间的关系近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数解析式y=f(t);(2)据进一步测定:当每毫升血液中含药量不少于0.25μg时,治疗有效.求服药一次后治疗有效的时间.综合提升组8.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子租不出去.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出去的房子不需要花这些费用).要使公司获得最大利润,每套公寓月租金应定为( )A.3000元B.330
5、0元C.3500元D.4000元9.已知甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某商人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t4时刻卖出所有商品,那么他将获得的最大利润是( )A.40万元B.60万元C.120万元D.140万元10.某商人购货,进价已按原价a扣去25%.他希望对货物订一新价,以便按新价让利20%销售后仍可获得售价25%的利润,则此商人经营这种货物的件数x与按新价让利总额y之间的函数关系式为 . 11.某企业生产A,B两种产品,根据
6、市场调查与预测,A产品的利润与投资成正比,其关系如图①;B产品的利润与投资的算术平方根成正比,其关系如图②(注:利润和投资单位:万元).图①图②(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部资金投入到A,B两种产品的生产中.①若平均投入生产两种产品,可获得多少利润?②如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润为多少万元?创新应用组12.(2018江苏苏北四市模拟,17)某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用
7、于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆O及其内接等腰三角形ABC绕底边BC上的高所在直线AO旋转180°而成,如图2.已知圆O的半径为10cm,设∠BAO=θ,0<θ<,圆锥的侧面积为Scm2.(1)求S关于θ的函数关系式;(2)为了达到最佳观赏效果,要求圆锥的侧面积S最大.求S取得最大值时腰AB的长度.参考答案课时规范练13 函数模型及其应用1.A 水面的高度h和时间t之间的关系可以从高度随时间的变化率上反映出来,图①应该是匀速的,故下面的图像不正确,②中的变化率是越来越慢的,正确;③中的变化规律是逐渐变慢再变快,正确;④中的
8、变化规律是逐渐变快再变慢,也正确,故只有①是错误的.故选A.2.D 根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.