立体几何大题20道.pdf

立体几何大题20道.pdf

ID:58325144

大小:358.05 KB

页数:7页

时间:2020-09-11

立体几何大题20道.pdf_第1页
立体几何大题20道.pdf_第2页
立体几何大题20道.pdf_第3页
立体几何大题20道.pdf_第4页
立体几何大题20道.pdf_第5页
资源描述:

《立体几何大题20道.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯立体几何大题20道1、(17年浙江)如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(I)证明:CE∥平面PAB;(II)求直线CE与平面PBC所成角的正弦值2、(17新课标3)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.3、

2、(17新课标2)如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底ABCD,1ABBCAD,BADABC90.(1)证明:直线BC∥平面PAD;2(2)若△PCD的面积为27,求四棱锥PABCD的体积.1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯o4、(17新课标1)如图,在四棱锥P-ABCD中,AB//CD,且BAPCDP90(1)证明:平面PAB⊥平面PAD;o8(2)若PA=PD=AB=DC,APD90,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.35、(17年山东)由四棱柱ABCD-A1B1C1D

3、1截去三棱锥C1-B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM平面B1CD1.6、(17年北京)如图,在三棱锥P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(Ⅰ)求证:PA⊥BD;(Ⅱ)求证:平面BDE⊥平面PAC;(Ⅲ)当PA∥平面BDE时,求三棱锥E–BCD的体积.2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

4、⋯⋯⋯7、(16年北京)如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DCAC(I)求证:DC平面PAC;(II)求证:平面PAB平面PAC;(III)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.8、(16年山东)在如图所示的几何体中,D是AC的中点,EF∥DB.(I)已知AB=BC,AE=EC.求证:AC⊥FB;(II)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.9、(16年上海)将边长为1的正方形AA?5?1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,AC长为,A1B1长6为,其中B1与C在平面AA1

5、O1O的同侧.3(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯110、如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BCCDAD。2(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(II)证明:平面PAB⊥平面PBD。PBCAD11、(16年新课标1)如图,在已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交

6、AB于点G.(I)证明:G是AB的中点;(II)在答题卡第(18)题图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.PEACDGB12、(16新课标2)如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将DEF沿EF折到D'EF的位置.(I)证明:ACHD';5(II)若AB5,AC6,AE,OD'22,求五棱锥D'ABCEF体积.44⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13、(16新课标3)如图,四棱锥P-ABCD中,PA⊥

7、底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明MN∥平面PAB;(II)求四面体N-BCM的体积.14、(2013·陕西,18,12分)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.15、(2016·宁夏银川二模,18,12分)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。