立体几何10道大题

立体几何10道大题

ID:21378533

大小:729.00 KB

页数:12页

时间:2018-10-21

立体几何10道大题_第1页
立体几何10道大题_第2页
立体几何10道大题_第3页
立体几何10道大题_第4页
立体几何10道大题_第5页
资源描述:

《立体几何10道大题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、立体几何练习题1.四棱锥中,底面为平行四边形,侧面面,已知,,,.(1)设平面与平面的交线为,求证:;(2)求证:;(3)求直线与面所成角的正弦值.2.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,,AD=AC=1,O为AC的中点,PO平面ABCD,PO=2,M为PD的中点。(1)证明:PB//平面ACM;(2)证明:AD平面PAC(3)求直线AM与平面ABCD所成角的正切值。123.如图,四棱锥中,,,△与△都是等边三角形.(1)证明:平面;(2)求二面角的平面角的余弦值.4.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AC⊥AD.底面

2、ABCD为梯形,AB∥DC,AB⊥BC,PA=AB=BC=3,点E在棱PB上,且PE=2EB.(Ⅰ)求证:平面PAB⊥平面PCB;(Ⅱ)求证:PD∥平面EAC;(Ⅲ)求平面AEC和平面PBC所成锐二面角的余弦值.5.如图,已知矩形所在平面垂直于直角梯形所在平面于直线,平面平面,且,,,且.(1)设点为棱中点,在面内是否存在点,使得平面?若存在,请证明;若不存在,请说明理由;(2)求二面角的余弦值.126.如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1,且AA1=AB=2.(1)求证:AB⊥BC;(2)若直线AC与平面A1BC所成

3、的角为,求锐二面角A﹣A1C﹣B的大小.7.在四棱锥V﹣ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.(1)求证AB⊥面VAD;(2)求面VAD与面VDB所成的二面角的大小.8.如图,在五面体ABCDEF中,四边形ABCD为菱形,且∠BAD=,对角线AC与BD相交于O,OF⊥平面ABCD,BC=CE=DE=2EF=2.(Ⅰ)求证:EF∥BC;(Ⅱ)求面AOF与平面BCEF所成锐二面角的正弦值.129.如图,在四棱锥P﹣ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2

4、BC,M、N分别为PC、PB的中点.(Ⅰ)求证:PB⊥DM;(Ⅱ)求BD与平面ADMN所成的角.10.如图,在等腰梯形中,,,,四边形为矩形,平面平面,.(1)求证:平面;(2)点在线段上运动,设平面与平面二面角的平面角为,试求的取值范围.12立体几何试卷答案(2)证明:连接AC,,由余弦定理得,6分取中点,连接,则.面…………………8分(Ⅲ)如图,以射线OA为轴,以射线OB为轴,以射线OS为轴,以为原点,建立空间直角坐标系,BySCAD122、试题解析:(1)证明:为AC的中点,即O为BD的中点,且M为PD的中点,又平面ACM,平面ACM,所以PB/

5、/平面ACM。(2)证明:因为,AD=AC,所以,所以,又PO平面ABCD,所以所以AD平面PAC。(3)取OD的中点为N,因为所以MN平面ABCD,所以为直线AM与平面ABCD所成角。因为AD=AC=1,,所以所以又所以123.(1)证明见解析;(2)..试题解析:(1)证明:过作平面于,连.依题意,则.又△为,故为的中点.∵面,∴面面.在梯形中,,4.【解答】(Ⅰ)证明:∵PA⊥底面ABCD,BC⊂底面ABCD,∴PA⊥BC.又AB⊥BC,PA∩AB=A,∴BC⊥平面PAB.又BC⊂平面PCB,∴平面PAB⊥平面PCB.…(Ⅱ)证明:∵PC⊥AD,

6、∴在梯形ABCD中,由AB⊥BC,AB=BC,得∠BAC=,∴∠DCA=∠BAC=,又AC⊥AD,故△DAC为等腰直角三角形,∴DC=AC=(AB)=2AB.连接BD,交AC于点M,则==2.连接EM,在△BPD中,==2,∴PD∥EM,又PD⊂/平面EAC,EM⊂平面EAC,∴PD∥平面EAC.…12(Ⅲ)解:以A为坐标原点,AB,AP所在直线分别为y轴,z轴,建立如图所示的空间直角坐标系.则A(0,0,0),B(0,3,0),C(3,3,0),P(0,0,3),E(0,2,1)设=(x,y,1)为平面AEC的一个法向量,则⊥,⊥,∵=(3,3,0)

7、,=(0,2,1),∴解得x=,y=﹣,∴=(,﹣,1).设=(x′,y′,1)为平面PBC的一个法向量,则⊥,⊥,又=(3,0,0),=(0,﹣3,3),∴,解得x′=0,y′=1,∴=(0,1,1).(取PB中点为F,连接AF可证为平面PBC的一个法向量.)∵cos<,>=

8、=,∴平面AEC和平面PBC所成锐二面角的余弦值为..…注:以其他方式建系的参照给分.5.(1)详见解析;(2).试题分析:(1)连接,交于点,连接,证明平面,从而即为所求;(2)建立空间直角坐标系,求得两个平面的法向量后即可求解.试题解析:(1)连接,交于点,连接,则平面,∵

9、为中点,为中点,∴为的中位线,∴,12又∵平面平面,平面平面,平面,,6【解答】(本小题满分1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。