《回归分析的基本思想及其初步应用》ppt课件.ppt

《回归分析的基本思想及其初步应用》ppt课件.ppt

ID:57044353

大小:1.27 MB

页数:36页

时间:2020-07-28

《回归分析的基本思想及其初步应用》ppt课件.ppt_第1页
《回归分析的基本思想及其初步应用》ppt课件.ppt_第2页
《回归分析的基本思想及其初步应用》ppt课件.ppt_第3页
《回归分析的基本思想及其初步应用》ppt课件.ppt_第4页
《回归分析的基本思想及其初步应用》ppt课件.ppt_第5页
资源描述:

《《回归分析的基本思想及其初步应用》ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高二数学选修1-21.1回归分析的基本思想及其初步应用比《数学3》中“回归”增加的内容数学3——统计画散点图了解最小二乘法的思想求回归直线方程y=bx+a用回归直线方程解决应用问题选修1-2——统计案例引入线性回归模型y=bx+a+e了解模型中随机误差项e产生的原因了解相关指数R2和模型拟合的效果之间的关系了解残差图的作用利用线性回归模型解决一类非线性回归问题正确理解分析方法与结果问题1:正方形的面积y与正方形的边长x之间的函数关系是y=x2确定性关系问题2:某水田水稻产量y与施肥量x之间是否-------有一个确定性的关系?例如:在7块并排、形状大小相同的试验田上进行施肥量对水稻产量影响的试

2、验,得到如下所示的一组数据:施化肥量x15202530354045水稻产量y330345365405445450455复习、变量之间的两种关系自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。1、定义:1):相关关系是一种不确定性关系;注对具有相关关系的两个变量进行统计分析的方法叫回归分析。2):2、现实生活中存在着大量的相关关系。如:人的身高与年龄;产品的成本与生产数量;商品的销售额与广告费;家庭的支出与收入。等等回归分析的内容与步骤:统计检验通过后,最后是利用回归模型,根据自变量去估计、预测因变量。回归分析通过一个变量或一些变量的变化解释另一变量的变化。其主要内

3、容和步骤是:首先根据理论和对问题的分析判断,将变量分为自变量和因变量;其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系;由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验;最小二乘法:称为样本点的中心。3、对两个变量进行的线性分析叫做线性回归分析。2、回归直线方程:2.相应的直线叫做回归直线。1、所求直线方程叫做回归直---线方程;其中相关系数1.计算公式2.相关系数的性质(1)

4、r

5、≤1.(2)

6、r

7、越接近于1,相关程度越大;

8、r

9、越接近于0,相关程度越小.问题:达到怎样程度,x、y线性相关呢?它们的相关程度怎样呢?负相关正相关相关系数r>0正相关;r<0负相关.通常,

10、r∈[-1,-0.75]--负相关很强;r∈[0.75,1]—正相关很强;r∈[-0.75,-0.3]--负相关一般;r∈[0.3,0.75]—正相关一般;r∈[-0.25,0.25]--相关性较弱;例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线

11、性相关关系,因此可以用线性回归方程刻画它们之间的关系。分析:由于问题中要求根据身高预报体重,因此选取身高为自变量,体重为因变量.2.回归方程:1.散点图;例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间

12、的关系。3、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数y=bx+a描述它们关系。探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?我们可以用下面的线性回归模型来表示:y=bx+a+e,其中a和b为模型的未知参数,e称为随机误差。思考:产生随机误差项e的原因是什么?随机误差e的来源(可以推广到一般):1、忽略了其它因素的影响:影响身高y的因素不只是体重x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高y的观测误差。以上三项误差越小,说明我们的回归模型的拟合效果

13、越好。函数模型与回归模型之间的差别函数模型:回归模型:可以提供选择模型的准则函数模型与回归模型之间的差别函数模型:回归模型:线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。在统计中,我们也把自变量x称为解析变量,因变量y称为预报变量。所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为思考:如何刻画预报变量(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。