BOOST电路设计及仿真.doc

BOOST电路设计及仿真.doc

ID:56594358

大小:523.50 KB

页数:16页

时间:2020-06-29

BOOST电路设计及仿真.doc_第1页
BOOST电路设计及仿真.doc_第2页
BOOST电路设计及仿真.doc_第3页
BOOST电路设计及仿真.doc_第4页
BOOST电路设计及仿真.doc_第5页
资源描述:

《BOOST电路设计及仿真.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.目录一.Boost主电路设计:21.1占空比D计算21.2临界电感L计算21.3临界电容C计算(取纹波Vpp<2.2V)21.4输出电阻阻值2二.Boost变换器开环分析22.1PSIM仿真22.2Matlab仿真频域特性2三.Boost闭环控制设计23.1闭环控制原理23.2补偿网络的设计(使用SISOTOOL确定参数)23.3计算补偿网络的参数2四.修正后电路PSIM仿真2五.设计体会2..Boost变换器性能指标:输入电压:标准直流电压Vin=48V输出电压:直流电压Vo=220V参考电压Vref=5V输出功率:Pout=5Kw输出电压纹波:Vpp=2.2VV

2、m=4V电流纹波:0.25A开关频率:fs=100kHz相位裕度:60幅值裕度:10dB一.Boost主电路设计:1.1占空比D计算根据Boost变换器输入输出电压之间的关系求出占空比D的变化围。1.2临界电感L计算选取L>Lc,在此选L=4uH..1.3临界电容C计算(取纹波Vpp<2.2V)选取C>Cc,在此选C=100uF1.4输出电阻阻值Boost主电路传递函数Gvd(s)占空比d(t)到输出电压Vo(t)的传递函数为:..二.Boost变换器开环分析2.1PSIM仿真电压仿真波形如下图电压稳定时间大约1.5毫秒,稳定在220V左右电压稳定后的纹波如下图..电

3、压稳定后的纹波大约为2.2V电流仿真波形如下图电流稳定时间大约2毫秒,稳定在22A左右电流稳定后的纹波如下图..2.2Matlab仿真频域特性设定参考电压为5V,则,系统的开环传递函数为,其中,..由上图可得,Gvd(s)的低频增益为-60dB,截止频率fc=196KHz,相位裕度--84.4,相位裕度过小,高频段是-20dB/dec。系统不稳定,需要加控制电路调整。1、开环传递函数在低频段的增益较小,会导致较大的稳态误差2、中频段的剪切频率较小会影响系统的响应速度,使调节时间较大。剪切频率较大则会降低高频抗干扰能力。3、相角裕度太小会影响系统的稳定性,使单位阶跃响应

4、的超调量较大。4、高频段是-20dB/dec,抗干扰能力差。将,代到未加补偿器的开环传递函数中。则,其中未加补偿器的开环传递函数如图..三.Boost闭环控制设计3.1闭环控制原理..输出电压采样与电压基准送到误差放大器,其输出经过一定的补偿后与PWM调制后控制开关管Q的通断,控制输出电压的稳定,同时还有具有一定的抑制输入和负载扰动的能力。令PWM的载波幅值等于4,则开环传递函数为F(s)=Gvd(s)*H(s)*Gc(s)3.2补偿网络的设计(使用SISOTOOL确定参数)原始系统主要问题是相位裕度太低、穿越频率太低。改进的思路是在远低于穿越频率fc处,给补偿网络增

5、加一个零点fZ,开环传递函数就会产生足够的超前相移,保证系统有足够的裕量;在大于零点频率的附近增加一个极点fP,并且为了克服稳态误差大的缺点,可以加入倒置零点fL,为此可以采用如图4所示的PID补偿网络。根据电路写出的PID补偿网络的传递函数为:式中:,,,在此我们通过使用Matlab中SISOTOOL工具来设计调节器参数,可得:零点频率极点频率倒置零点频率..直流增益首先确定PID调节器的参数,按设计要求拖动添加零点与极点,所得参数如图加入PID之后,低频段的增益抬高,稳态误差减小,如图闭环阶跃响应曲线如下图..幅值裕度为:GM=6.81dB,相角裕度:PM=49.

6、6°,截止频率:fc=10KHz高频段f>fp,补偿后的系统回路增益在fc处提升至0dB,且以-40dB/dec的斜率下降,能够有效地抑制高频干扰。3.3计算补偿网络的参数由sisotool得到补偿网络的传递函数为:由前面可有补偿网络的传递函数为:对比两式可得,假设补偿网络中Ci=1μF依据前面的方法计算后,选用Rz=270,Rp=0.2,Rf=75.24,Cf=1.33uF。四.修正后电路PSIM仿真(1)额定输入电压,额定负载下的仿真..电压响应如下图电压稳定时间大约为2毫秒,稳定值为220V,超调量有所减少,峰值电压减小到了260V.稳定后的电压纹波如下图(电压

7、纹波大约为2.2V)..电流纹波如下(电流纹波大约为0.07A)验证扰动psim图..(2)额定输入电压下,负载阶跃变化0-3KW-5KW-3KW电压响应曲线如下图电压调节时间大约1ms,纹波不变大约为2.2V。由此可见,输出电压对负载变化的反应速度很快且输出电压稳定。电流响应曲线如下图(3)负载不变(3KW),输入电压阶跃变化48-36V输入电压从48V变到36V时的电压响应如下图..输出电压的局部放大图像如下图由上图可知,输出电压调节时间大约为1ms,而且稳压效果好。五.设计体会通过BOOST变换器的设计,可以看出闭环控制的稳压及抑制干扰的作用。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。