欢迎来到天天文库
浏览记录
ID:56509445
大小:411.50 KB
页数:5页
时间:2020-06-26
《中考数学一轮复习 第11讲 一次函数的图象与性质教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第11讲一次函数的图象与性质一、复习目标1.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的解析式.2.经历列表、描点、连线画一次函数图象的过程,根据一次函数的图象和解析式y=kx+b(k≠0),探索并理解k>0和k<0时图象的变化情况,弄能灵活运用.3.理解正比例函数,掌握正比例函数的图象和性质并能灵活运用.4.会利用待定系数法确定正比例函数和一次函数的解析式.5.会用函数图象的方法求方程(组)与不等式(组)的解(集)二、课时安排1课时三、复习重难点1.会利用待定系数法确定正比例函数和一次函数的解析
2、式.2.会用函数图象的方法求方程(组)与不等式(组)的解(集)四、教学过程(一)、知识梳理一次函数与正比例函数的概念1.一次函数的定义:一般地,形如________(k、b是常数,k≠0)的函数,叫做一次函数.特别地,当b=0时,一次函数为y=________(k≠0),这时,y叫做x的_______函数.2.一次函数例=kx+b(k≠0)的图象是一条_______.特别地,y=kx(k≠0)的图象是一条经过_______的直线.一次函数的图象和性质1.正比例函数y=kx的性质:(1)当_______时,y随x的
3、增大而增大.(2)当_______时,y随x的增大而减小.2.一次函数y=kx+b(k≠0)中的k值决定了函数的增减性,b值决定图象与y轴的交点.当k>0,b>0时,函数图象经过________,y随x的增大而_______;当k>0,b<0时,函数图象经过_______,y随x的增大而_______;当k<0,b>0时,函数图象经过________,y随x的增大而_______;当k<0,b<0时,函数图象经过________,y随x的增大而_______.由待定系数法求一次函数的解析式1.用待定系数法求一次函
4、数关系式的一般步骤:(1)设出函数关系式为________.(2)找到两个已知点的坐标,并代入所设函数关系式得到关于k、b的方程组.(3)解方程组求出k、b的值.(4)把得到的k、b的值代入所设关系式.一次函数与一次方程(组)、一元一次不等式(组)1.由于任何一元一次方程都可以化为ax+b=0(a、b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当一次函数y=ax+b的值为0时,求相应的自变量的值,从图象上看,这相当于已知直线y=ax+b,确定它与_______交点的横坐标的值.2.由于任何一元一次不等式
5、都可以化为ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数y=ax+b的值大(小)于0时,求自变量相应的_______.3.一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值_______以及这个函数值为何值;从“形”的角度看,解方程组相当于确定两条直线交点的(二)题型、方法归纳考点1一次函数的图象与性质技巧归纳:k和b的符号作用:k的符号决定函数的增减性,k>0时,y随x的增大而增大,
6、k<0时,y随x的增大而减小;b的符号决定图象与y轴交点在原点上方还是下方(上正,下负).考点2一次函数的图象的平移技巧归纳:直线y=kx+b(k≠0)在平移过程中k值不变.平移的规律是若上下平移,则直接在常数b后加上或减去平移的单位数;若向左(或向右)平移m个单位,则直线y=kx+b(k≠0)变为y=k(x+m)+b(或k(x-m)+b),其口诀是上加下减,左加右减.考点3求一次函数的解析式技巧归纳:根据一次函数y=kx+b(k≠0)的图象过点求解即可考点4一次函数与一次方程(组),一元一次不等式(组)技巧归纳
7、:(1)两直线的交点坐标是两直线所对应的二元一次方程组的解.(2)根据在两条直线的交点的左右两侧,图象在上方或下方来确定不等式的解集.(三)典例精讲例1如图一次函数y=(m-1)x-3的图象分别与x轴、y轴的负半轴相交于点A、B,则m的取值范围是( )A.m>1B.m<1C.m<0D.m>0解析:根据函数的图象可知m-1<0,求出m的取值范围为m<1.故选B.点析:k和b的符号作用:k的符号决定函数的增减性,k>0时,y随x的增大而增大,k<0时,y随x的增大而减小;b的符号决定图象与y轴交点在原点上方还是下方
8、(上正,下负).例2如图一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,-2),则kb=________.解析∵y=kx+b的图象与正比例函数y=2x的图象平行,两平行直线的解析式的k值相等,∴k=2.∵y=kx+b的图象经过点A(1,-2),∴2+b=-2,解得b=-4,∴kb=2×(-4)=-8.点析:直线y=kx+b(k≠0)在平移过程中k值
此文档下载收益归作者所有