欢迎来到天天文库
浏览记录
ID:56271835
大小:241.00 KB
页数:16页
时间:2020-06-05
《2015年上海市十三校联考高考数学二模试卷(理科).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2015年上海市十三校联考高考数学二模试卷(理科) 一、填空题(本大题满分56分)本大题共有14题,每个空格填对4分,否则一律得零分.1.(4分)(2015•上海模拟)幂函数y=x(m∈N)在区间(0,+∞)上是减函数,则m= 0 .【考点】:幂函数的单调性、奇偶性及其应用;幂函数的概念、解析式、定义域、值域.【专题】:计算题;函数的性质及应用;不等式的解法及应用.【分析】:根据幂函数的性质,可得m2+2m﹣3<0,解不等式求得自然数解,即可得到m=0.【解析】:解:由幂函数y=xm2+2m﹣3在(0,+∞)为减函数,则m2+2m﹣3<0,解得﹣3<m<1.由于m∈N,则m=0.故答案为:0.
2、【点评】:本题考查幂函数的性质,主要考查二次不等式的解法,属于基础题. 2.(4分)(2015•上海模拟)函数的定义域是 (0,1] .【考点】:函数的定义域及其求法;对数函数的定义域.【专题】:计算题.【分析】:令被开方数大于等于0,然后利用对数函数的单调性及真数大于0求出x的范围,写出集合区间形式即为函数的定义域.【解析】:解:∴0<x≤1∴函数的定义域为(0,1]故答案为:(0,1]【点评】:求解析式已知的函数的定义域应该考虑:开偶次方根的被开方数大于等于0;对数函数的真数大于0底数大于0小于1;分母非0. 3.(4分)(2006•上海)在△ABC中,已知BC=8,AC=5,三角形面积为
3、12,则cos2C= .【考点】:余弦定理的应用.【专题】:计算题.【分析】:先通过BC=8,AC=5,三角形面积为12求出sinC的值,再通过余弦函数的二倍角公式求出答案.【解析】:解:∵已知BC=8,AC=5,三角形面积为12,∴•BC•ACsinC=12∴sinC=∴cos2C=1﹣2sin2C=1﹣2×=故答案为:【点评】:本题主要考查通过正弦求三角形面积及倍角公式的应用.属基础题. 4.(4分)(2015•上海模拟)设i为虚数单位,若关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,则m= 1 .【考点】:复数相等的充要条件.【专题】:数系的扩充和复数.【分析】:
4、把n代入方程,利用复数相等的条件,求出m,n,即可.【解析】:解:关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,可得n2﹣(2+i)n+1+mi=0所以,所以m=n=1,故答案为:1.【点评】:本题考查复数相等的条件,考查计算能力,是基础题. 5.(4分)(2015•上海模拟)若椭圆的方程为+=1,且此椭圆的焦距为4,则实数a= 4或8 .【考点】:椭圆的简单性质.【专题】:圆锥曲线的定义、性质与方程.【分析】:首先分两种情况:①焦点在x轴上.②焦点在y轴上,分别求出a的值即可.【解析】:解:①焦点在x轴上时:10﹣a﹣(a﹣2)=4解得:a=4.②焦点在y轴上时a﹣2﹣
5、(10﹣a)=4解得:a=8故答案为:4或8.【点评】:本题考查的知识要点:椭圆方程的两种情况:焦点在x轴或y轴上,考察a、b、c的关系式,及相关的运算问题. 6.(4分)(2015•上海模拟)若一个圆锥的侧面展开如圆心角为120°、半径为3的扇形,则这个圆锥的表面积是 4π .【考点】:棱柱、棱锥、棱台的侧面积和表面积.【专题】:空间位置关系与距离.【分析】:易得圆锥侧面展开图的弧长,除以2π即为圆锥的底面半径,圆锥表面积=底面积+侧面积=π×底面半径2+π×底面半径×母线长,把相关数值代入即可求解.【解析】:解:圆锥的侧面展开图的弧长为:=2π,∴圆锥的底面半径为2π÷2π=1,∴此圆锥的
6、表面积=π×(1)2+π×1×3=4π.故答案为:4π.【点评】:本题考查扇形的弧长公式为;圆锥的侧面展开图的弧长等于圆锥的底面周长,圆锥的表面积的求法. 7.(4分)(2015•上海模拟)若关于x的方程lg(x2+ax)=1在x∈[1,5]上有解,则实数a的取值范围为 ﹣3≤a≤9 .【考点】:函数的零点.【专题】:计算题;函数的性质及应用.【分析】:由题意,x2+ax﹣10=0在x∈[1,5]上有解,可得a=﹣x在x∈[1,5]上有解,利用a=﹣x在x∈[1,5]上单调递减,即可求出实数a的取值范围.【解析】:解:由题意,x2+ax﹣10=0在x∈[1,5]上有解,所以a=﹣x在x∈[1,
7、5]上有解,因为a=﹣x在x∈[1,5]上单调递减,所以﹣3≤a≤9,故答案为:﹣3≤a≤9.【点评】:本题主要考查方程的根与函数之间的关系,考查由单调性求函数的值域,比较基础. 8.(4分)(2015•上海模拟)《孙子算经》卷下第二十六题:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何? 23,或105k+23(k为正整数). .(只需写出一个答案即可)【考点】:进行简单的
此文档下载收益归作者所有