教学设计 6.3.1 生日相同的概率(一).doc

教学设计 6.3.1 生日相同的概率(一).doc

ID:55637327

大小:61.00 KB

页数:11页

时间:2020-05-22

教学设计 6.3.1 生日相同的概率(一).doc_第1页
教学设计 6.3.1 生日相同的概率(一).doc_第2页
教学设计 6.3.1 生日相同的概率(一).doc_第3页
教学设计 6.3.1 生日相同的概率(一).doc_第4页
教学设计 6.3.1 生日相同的概率(一).doc_第5页
资源描述:

《教学设计 6.3.1 生日相同的概率(一).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、教学设计:§6.3.1生日相同的概率(一)教学背景分析:(一)教学内容:本节课是北京版《义务教育课程标准实验教科书》九年级上册第六章第3节的内容,共安排2课时,这是第1课时。具体来说,第1节通过一个课堂试验活动,让学生逐步计算一个随机事件发生的试验频率,观察其中的规律性,并利用类比的方法归纳出试验频率趋近于理论概率这一规律性,然后介绍两种计算理论概率的方法——树状图和列表法;在此基础上,第2,3节利用试验频率来估计一些事件发生的概率;最后,第4节利用试验频率与理论概率之间关系的分析,揭示统计推断的一些理论依据,力图加强概率与统计的联系。在概率模型的选择上,教

2、科书注意了模型的递进性、现实性和趣味性,以激发学生的学习兴趣。例如,对于试验估算概率的有关问题,力图联系学生的生活实际,同时又注意了问题的趣味性和可操作性,为此选择了一个历史上著名的投针试验和一个密切联系学生生活的生日问题。(二)学生情况:学生在七年级已经认识了许多随机事件,研究了一些简单的随机事件发生的可能性(概率),并对一些现象作出了合理的解释,对一些游戏活动的公平性作出了自己的评判。但学生对随机事件及其发生的概率的认识是一个较长的认识过程,学生对概率的理解也有必要随着其数学活动经验的不断加深而逐步得到发展。义务教育阶段学生可以掌握的有关概率模型大致分为

3、三类:第一类问题没有理论概率,只能借助试验模拟获得其估计值,一般而言,它是一个纯粹的现实问题;第二类问题虽然存在理论概率,但其理论计算已经超出了义务教育阶段学生的认知水平,学生只能借助试验模拟获得其估计值;第三类问题则是简单的古典概型,理论上容易求出其概率。教学方式:教师组织引导,学生自主探索、合作交流学习教学手段:借助多媒体辅助教学,为学生提供丰富的知识和素材.教学目标:(一)教学知识点:能用实验的方法估计一些复杂的随机事件发生的概率.(二)能力训练要求:经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.(三)情感与价值观要求:通过对贴

4、近学生生活的有趣的生日问题的实验、统计,提高学习数学的兴趣.并且有助于破除迷信,培养学生严谨的科学态度和辩证唯物主义世界观.教学重点:用实验的方法估计一些复杂的随机事件的概率.教学难点:经历用实验频率估计理论概率的过程,并初步感受到50个同学中有2个同学生日相同的概率较大.教学方法:探究——实验——合作交流法.本课时选择了贴近学生生活的生日问题,旨在通过具体收集数据.进行实验,统计结果,合作交流的过程,丰富学生的活动经验,并初步感受到频率与概率的关系.教具准备:教师制作多媒体演示课件,学生自制扑克牌、抓阄、玻璃球.每个同学课外凋查10个人的生日、生肖.教学过

5、程:(一)创设问题情境,引入新课:《红楼梦》62回中有这样一段话:探春笑道:“倒有些意思.一年十二个月,月月有几个生日.人多了,就这样巧,也有三个一日的,两个一日的……过了灯节,就是大太太和宝姐姐,他们娘儿两个遇的巧,”宝玉又在旁边补充,一面笑指袭人:“二月十二日是林姑娘的生日,他和林妹妹是一月,他所以记得.”关于生日问题,还有几个很有趣的故事:(1)有一次,美国数学家伯格米尼去观看世界杯足球赛,在看台上随意挑选了22名观众,叫他们报出自己的生日,结果竟然有两个人的生日是相同的,使在场的球迷们感到吃惊.(2)还有一个人也作了一次实验.一天他与一群高级军官用餐

6、,席问,大家天南地北地闲聊.慢慢地,话题转到生日上来,他说:“我们来打个赌.我说,我们之间至少有两个人的生日相同.”“赌输了.罚酒三杯!”在场的军官们都很感兴趣.“行!”在场的各人把生日一一报出.结果没有生日恰巧相同的.“快!你可得罚酒啊!”突然,一个女佣人在门口说:“先生.我的生日正巧与那边的将军一样”.大家傻了似的望望女佣.他趁机赖掉了三杯罚酒.那么,在几个人中,有2个人生日相同的可能性到底有多大,即几个人中,有2个人生日相同的概率是多少呢?故事中情境是一种必然还是一种偶然呢?下面,我们就带着这个问题,学习研究一个历史上很有名的趣味性问题——生日相同的概

7、率.(二)经历实验、统计等活动过程,估计复杂随机事件(生日相同)的概率:[师]400个同学中,一定有2个同学的生日相同(可以不同年)吗?[生]一定![师]依据是什么呢?[生]抽屉原理——把m个东西任意放进n个空抽屉里(m>n).那么一定有一个抽屉中放进了至少2个东西.在上面的问题小,由于一年最多有366天,因此,在400个同学中一定会出现至少2个人出生在同月同日.就相当于把400个东西放到366个抽屉里,一定至少有2个东西放在同一抽屉里.[师]这位同学解释得很精彩!同学们可接着思考:300个同学中,一定有两个同学的生日相同吗?[生]这就不敢保征了.[师]但我

8、认为我们班50个同学中很可能就有2个同学的生日相同.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。