【复习专题】中考数学复习:22题阅读理解综合复习.doc

【复习专题】中考数学复习:22题阅读理解综合复习.doc

ID:55632926

大小:2.37 MB

页数:35页

时间:2020-05-21

【复习专题】中考数学复习:22题阅读理解综合复习.doc_第1页
【复习专题】中考数学复习:22题阅读理解综合复习.doc_第2页
【复习专题】中考数学复习:22题阅读理解综合复习.doc_第3页
【复习专题】中考数学复习:22题阅读理解综合复习.doc_第4页
【复习专题】中考数学复习:22题阅读理解综合复习.doc_第5页
资源描述:

《【复习专题】中考数学复习:22题阅读理解综合复习.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、阅读理解题一、知识梳理二、教学重、难点三、作业完成情况四、典题探究例1阅读理解:如图1,若在四边形ABCD的边AB上任取一点E(点E与点A,B不重合),分别连结ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:(1)如图1,若∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方

2、形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,请直接写出的值.图1图2图3例2小华遇到这样一个问题,如图1,△ABC中,∠ACB=30º,BC=6,AC=5,在△ABC内部有一点P,连接PA、PB、PC,求PA+PB+PC的最小值.图2图3图1小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一

3、条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC绕点C顺时针旋转60º,得到△EDC,连接PD、BE,则BE的长即为所求.(1)请你写出图2中,PA+PB+PC的最小值为;(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,∠ABC=60º,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于PA+PB+PC最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD的边长为

4、4,请直接写出当PA+PB+PC值最小时PB的长.例3老师要求同学们在图①中内找一点P,使点P到OM、ON的距离相等.小明是这样做的:在OM、ON上分别截取OA=OB,连结AB,取AB中点P,点P即为所求.请你在图②中的内找一点P,使点P到OM的距离是到ON距离的2倍.要求:简单叙述做法,并对你的做法给予证明.例4.如图,在菱形纸片ABCD中,AB=4cm,∠ABC=120°,按下列步骤进行裁剪和拼图:第一步:如图1,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图2,沿三角形EBC的中位线GH将纸片

5、剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图3,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,再与三角形纸片EGH拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)(1)请你在图3中画出拼接成的四边形;(2)直接写出拼成的四边形纸片周长的最小值为________cm,最大值为________cm.五、演练方阵A档(巩固专练)1.小明遇到这样一个问题:如图1,在

6、边长为的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积。小明发现:分别延长QE,MF,NG,PH,交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则这个新的正方形的边长为__________;(2)求正方形MNPQ的面积。参考小明思考问题的方法,解决问题:如图3,在等边△ABC各边上分别截取AD=BE=CF,

7、再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ,若,则AD的长为__________。2.先阅读材料,再解答问题:小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图,点A、B、C、D均为⊙O上的点,则有∠C=∠D.小明还发现,若点E在⊙O外,且与点D在直线AB同侧,则有∠D>∠E.请你参考小明得出的结论,解答下列问题:(1)如图1,在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3),点C的坐标为(3,0).①在图1中作出△ABC的外接圆(保留必要的作图痕迹,不写作法);②若

8、在轴的正半轴上有一点D,且∠ACB=∠ADB,则点D的坐标为;(2)如图2,在平面直角坐标系xOy中,点A的坐标为(0,m

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。