欢迎来到天天文库
浏览记录
ID:55077639
大小:272.50 KB
页数:6页
时间:2020-04-26
《《因数和倍数》具体内容及教学建议.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《因数和倍数》具体内容及教学建议教学内容:第12~16页教材说明: 这部分教材首先介绍了因数和倍数的概念,然后在例1和例2分别介绍了求一个数的因数和倍数的方法。1.因数和倍数。编写意图本单元在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基础上再引出因数和倍数的概念。实际上,如前所述,由于乘除法本身就存在着互逆关系,用乘法算式(如b=na)同样可以表示
2、整除的含义。因此,本套教材中没有用数学化的语言给“整除”6/6下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。这样,学生不必通过12÷2=6得出12能被2整除,进而2是12的因数,12是2的倍数。再通过12÷6=2得出12能被6整除,进而6是12的因数,12是6的倍数,大大简化了叙述和记忆的过程。在这儿,用一个乘法算式2×6=12可以同时说明“2和6都是12的因数,12是2的倍数,也是6的倍数。”接着,通过3×4=12,进一
3、步巩固因数和倍数的概念。在学生熟练掌握了因数和倍数的概念以后,教材让学生试着找出12的其他因数,引导学生写出两个数的积等于12的另一个乘法算式1×12=12,从而得出1和12也是12的因数。最后,教材对整数0进行特殊说明,以明确本单元中数的研究范围。因为数论只研究整数的性质,所以,本单元中涉及到的数都是整数。由于学生还没有学习负整数,因此,本单元的整数与自然数同义。根据因数和倍数的定义,0是任何非零自然数的倍数,任何非零自然数都是0的因数。但是考虑到以后研究最大公因数和最小公倍数时,如果不排除0,很多
4、问题无从讨论,如讨论0和5的最大公因数既没有实际意义,也没有数学意义,再如,如果把0考虑在内,任意两个自然数的最小公倍数就是0,这样的研究没有任何价值。因此,教材指出本单元研究的内容一般不包括0,这样就避免了一些不必要的麻烦。教学建议教学因数和倍数概念时,可以结合教材上的直观图(2行飞机,每行6架)引导学生列出乘法算式2×6=12或6×2=12,再根据所列的乘法算式直接给出因数和倍数的概念。接下来,再结合直观图(3行飞机,每行4架)进一步巩固因数和倍数的概念。最后,让学生脱离情境图,想一想12还有哪些
5、因数,引导学生列出乘法算式1×12=12或12×1=12,概括出“1和12都是12的因数,12是1和它本身的倍数”。在此基础上,教师可以引导学生利用一般的乘法算式a×b=c归纳出因数和倍数的概念:a、b都是c的因数,c是a和b的倍数。教学时,应注意以下四点:(1)虽然本套教材不是从过去的整除定义(形式上是除法算式)出发,而是通过一个乘法算式来引出因数和倍数概念,但在本质上仍是以“整除”6/6为基础,只是略去了许多中间描述。因此,要注意,只有在这个乘法算式中的因数和积都是整数的情况下才能讨论因数和倍数的
6、概念。教学时,教师也可以举出一些反例加以说明,如5×0.8=4,虽然等式成立,但不能说5和0.8是4的因数,或4是5和0.8的倍数。(2)因数和倍数是一对相互依存的概念,不能单独存在。a是b的因数,反过来b就是a的倍数,因此,描述因数或倍数时必须说清楚谁是谁的因数(或倍数),要引导学生使用比较规范的语言,如“2是12的因数,12是2的倍数”而不是“2是因数,12是倍数”,在课堂上或练习中学生如果出现类似的错误要及时加以纠正。(3)要注意区分乘法算式各部分名称中的“因数”和本单元中的“因数”的联系和区别
7、。在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数,而后者是相对于“倍数”而言的,与以前所说的“约数”同义,说“×是×的因数”时,两者都只能是整数。(4)要注意区分“倍数”与前面学过的“倍”的联系与区别。“倍”的概念比“倍数”要广,如我们可以说“15是3的5倍”,也可以说“1.5是0.3的5倍”,但我们只能说“15是3的倍数”,却不能说“1.5是0.3的倍数”。我们在求一个数的倍数时,运用的方法与“求一个数的几倍是多少”是相同的,只是这里的“几倍”都
8、是指整数倍。2.例1。编写意图 例1是教学一个数的因数的求法。教材直接提出问题“18可以由哪两个数相乘得到?”6/6引导学生利用因数的概念来求18的因数。在这里,每列出一个乘法算式,就可以求出18的一对因数,只要学生有序地写出两个数的乘积是18的所有乘法算式,就可以把因数找全。在此基础上,再用集合图表示出一个数的全部因数,为后面用交集形式表示两个数的公因数打下基础,使学生初步体会到一个数的因数的个数是有限的。 接下来,通过“做一做”进一步巩固求一
此文档下载收益归作者所有