全国初中数学竞赛辅导(初1)_绝对值.doc

全国初中数学竞赛辅导(初1)_绝对值.doc

ID:54968130

大小:445.50 KB

页数:13页

时间:2020-04-25

全国初中数学竞赛辅导(初1)_绝对值.doc_第1页
全国初中数学竞赛辅导(初1)_绝对值.doc_第2页
全国初中数学竞赛辅导(初1)_绝对值.doc_第3页
全国初中数学竞赛辅导(初1)_绝对值.doc_第4页
全国初中数学竞赛辅导(初1)_绝对值.doc_第5页
资源描述:

《全国初中数学竞赛辅导(初1)_绝对值.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第七讲初中数学竞赛中绝对值的应用(一) 绝对值在计算中应用从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离.但除零以外,任一个绝对值都是表示两个不同数的绝对值.即一个数与它相反数的绝对值是一样的.由于这个性质,所以含有绝对值的方程与不等式的求解过程又出现了一些新特点.本讲主要介绍方程与不等式中含有绝对值的处理方法.  一个实数a的绝对值记作|a|,指的是由a所唯一确定的非负实数:  含绝对值的不等式的性质:   (2)|a|-|b|≤|a+b|≤|a|+|b|;  (3)|a|-|b|≤|a-b|≤

2、|a|+|b|.由于绝对值的定义,所以含有绝对值的代数式无法进行统一的代数运算.通常的手法是分别按照绝对值符号内的代数式取值的正、负情况,脱去绝时值符号,转化为不含绝对值的代数式进行运算,即含有绝对值的方程与不等式的求解,常用分类讨论法.在进行分类讨论时,要注意所划分的类别之间应该不重、不漏.下面结合例题予以分析. 例1a,b为实数,下列各式对吗?若不对,应附加什么条件?  (1)|a+b|=|a|+|b|;  (2)|ab|=|a||b|;(3)|a-b|=|b-a|;  (4)若|a|=b,则a=b;  

3、(5)若|a|<|b|,则a<b;  (6)若a>b,则|a|>|b|.  解(1)不对.当a,b同号或其中一个为0时成立.(2)对.13  (3)对.  (4)不对.当a≥0时成立.  (5)不对.当b>0时成立.  (6)不对.当a+b>0时成立.  例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.   解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.  再根据绝对值

4、的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.  于是有  原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.  例3已知x<-3,化简:|3+|2-|1+x|||.  分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.  解原式=|3+|2+(1+x)||(因为1+x<0)     =|3+|3+x||     =|3-(3+x)|(因为3+x<0)     =|-x|=-x.    解因为abc≠0,所以a≠0,b≠0,c≠0.1

5、3  (1)当a,b,c均大于零时,原式=3;  (2)当a,b,c均小于零时,原式=-3;  (3)当a,b,c中有两个大于零,一个小于零时,原式=1;  (4)当a,b,c中有两个小于零,一个大于零时,原式=-1.    说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.  例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.  解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=

6、-3.  (1)当y=2时,x+y=-1;  (2)当y=-2时,x+y=-5.  所以x+y的值为-1或-5.  例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.  解a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是    |a-b|19=0且|c-a|99=1,①  或|a-b|19=1且|c-a|99=0.②  由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=

7、a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,  所以|c-a|+|a-b|+|b-c|=2.13    解依相反数的意义有|x-y+3|=-|x+y-1999|.  因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即  由①有x-y=-3,由②有x+y=1999.②-①得2y=2002,y=1001,  所以  例8化简:|3x+1|+|2x-1|.  分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两

8、个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即  这样我们就可以分类讨论化简了。 13           原式=-(3x+1)-(2x-1)=5x;         原式=(3x+1)-(2x-1)=x+2;        原式=(3x+1)+(2x-1)=5x.  即      

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。