空间中垂直关系.doc

空间中垂直关系.doc

ID:54603057

大小:457.00 KB

页数:10页

时间:2020-04-18

空间中垂直关系.doc_第1页
空间中垂直关系.doc_第2页
空间中垂直关系.doc_第3页
空间中垂直关系.doc_第4页
空间中垂直关系.doc_第5页
资源描述:

《空间中垂直关系.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、空间中的垂直关系1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间中垂直关系的简单命题.在高考中,对空间垂直关系的考查主要表现在三个方面:一是将关于空间位置关系的定义、判定和性质结合起来,以选择、填空的形式,对有关命题的真假进行判断;二是灵活运用判定定理、性质定理求线面角、二面角,考查空间想象能力及计算能力;三是以几何体为载体,在解答题中以证明的形式,考查线线、线面、面面垂直关系及逻辑推理能力.1.线线垂直如果两条直线所成的角是______(无论它们是相交还是异面),那么这两条直线互相垂直.2.直线与平面垂直

2、(1)定义:如果直线l与平面α内的任意一条直线都垂直,我们就说______________________,记作____________.直线l叫做______________,平面α叫做______________.直线与平面垂直时,它们惟一的公共点P叫做_________.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的距离.(2)判定定理:一条直线与一个平面内的________都垂直,则该直线与此平面垂直.推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.用符号表示:a∥b,a⊥α⇒b⊥α.(3)性质定理:垂直于同一

3、个平面的两条直线__________.3.直线和平面所成的角平面的一条斜线和它在平面上的射影所成的________,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.任一直线与平面所成角θ的范围是____________.4.二面角的有关概念(1)二面角:从一条直线出发的_____________叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作______________的两条射线,这两条射线所成的角叫做二面角的平面角.二面角的范围是__________.5.平面与平面

4、垂直(1)定义:一般地,两个平面相交,如果它们所成的二面角是____________,就说这两个平面互相垂直.(2)判定定理:一个平面过另一个平面的________,则这两个平面垂直.(3)性质定理:两个平面垂直,则一个平面内垂直于______的直线与另一个平面垂直. 设m,n是空间两条不同的直线,α,β是空间两个不同的平面,当m⊂α,n⊂β时,下列命题正确的是(  )A.若m∥n,则α∥βB.若m⊥n,则α⊥βC.若m⊥β,则m⊥nD.若n⊥α,则m⊥β 设α,β为两个不同的平面,直线l⊂α,则“l⊥β”是“α⊥β”成立的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分

5、也不必要条件 在三棱柱ABCA1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是(  )A.30°B.45°C.60°D.90° 如图,二面角αlβ的大小是60°,线段AB⊂α,B∈l,AB与l所成的角为30°.则AB与平面β所成的角的正弦值是________. 在正方体ABCDA′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为_

6、___________.(写出所有正确结论的编号)类型一 线线垂直问题 如图,在四棱台ABCDA1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°.(1)证明:AA1⊥BD;(2)证明:CC1∥平面A1BD.【评析】本题主要考查线线、线面位置关系.第(1)问证明线线垂直,其实质是通过证明线面垂直,再化归为线线垂直;第(2)问证明线面平行,需转化为证明线线平行,由于面A1BD中没有与CC1平行的直线,故需作辅助线. ()如图,在三棱锥SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别

7、是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.类型二 线面垂直问题 如图,四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.(1)求证:CE⊥平面PAD;(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥PABCD的体积.【评析】证明线面垂直的基本思路是证明该直线和平面内的两条相交直线垂直,亦可利用面面垂直的性质定理来证明;第(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。