欢迎来到天天文库
浏览记录
ID:53342666
大小:115.00 KB
页数:2页
时间:2020-04-03
《湖南省望城县金海双语实验学校八年级数学 《函数》导学案(无答案) 人教新课标版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、函数备课时间月日上课时间月日星期第节课题第课时累计课时学习目标知识与技能:1、通过练习、观察,了解自变量、函数等概念。2、会写出有关实例中的函数关系式,会求函数值,会确定自变量的取值范围过程与方法:探究函数与自变量的对应关系;理解如何求函数解析式、自变量范围、自变量的函数值。情感、态度与价值观:通过学习函数概念,提高学生的分析、综合能力,渗透有特殊到一般、由具体到抽象的思考方法,向学生渗透数形结合思想。学习重点了解函数的意义,会求自变量的取值范围及求函数值。学习难点函数概念的抽象性及列函数式。学
2、习过程学习内容及预见性问题时间学习要求下列问题中哪些是自变量?哪些是常量?试写出自变量和常量的关系式。(1)长方形的周长为24cm,其中一边为xcm(x>0),面积为ycm²,试写出长方形中y与x的关系式;(2)某种报纸的价格是每份0.4元,试写出x份报纸的总价为y元之间的关系式;(3)某种储蓄的月利率是0.36%,今存入本金100元,试写出本息和y(元)与所存月数x之间的关系式。一、巩固旧知,激趣导入:1、上面的每个问题中的两个变量互相联系,想一想:当其中一个变量取定一个值时,另一个变量有什么
3、变化?2、什么是自变量?什么是函数?3、什么叫做函数值?你能举例说明吗?4、自变量的取值范围是什么?怎么求自变量的取值范围?二、明确目标,自主学习:1、一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都由唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。2、自变量的取值范围函数关系式中自变量的取值范围必须使函数解析式都有意义。三、合作探究,落实目标:函数解析式:(1)函数解析式是等式;(2)函数解析式中,通常等式右边的式子中的变量是自变量,等式左边的那个字
4、母表示自变量的函数。学习内容及预见性问题学习要求2用心爱心专心(1)当函数解析式是整式时,自变量的取值范围可取全体实数;(2)当函数解析式是分式(分母中含有字母)时,自变量的取值范围要使分母不能为零;(3)当函数解析式是偶次根式时,自变量必须使被开方数是非负数;(4)对于实际问题中的函数,除使解析式有意义外,还要使实际问题有意义。3、函数解析式:用来表示函数关系的等式,也称函数关系式。4、函数值:在一个函数解析式中,如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。例1、已知两个变量x
5、、y满足关系2x-3y+1=0,试问:(1)y是x的函数吗?(2)x是y的函数吗?若是,写出y与x的关系式,若不是,说明理由。例2、函数中,求自变量x的取值范围。例3:、周长为12米的竹篱笆围成一个长方形养鸡场,养鸡场的一边靠墙(墙长5米),另三边用竹篱笆围成,如果养鸡场一边长为x米,另一边长为y米。(1)写出y与x的函数解析式;(2)求出自变量的取值范围,四、交流展示,体验成功:1、在下列各式中,y不是x的函数的是()A、B、C、D、2、函数的自变量x的取值范围是;3、当x=2时,函数的值为;
6、4、分别写出下列各问题中的函数关系式,并指出式中的自变量的取值范围。(!)寄一封质量在20克以内的市内平信,需邮资0.50元,求寄n封这样的信所需邮资y(元)与n之间的关系式;(2)长方形的周长为12cm,求它的面积S(cm²)与它的一边长x(cm)间的函数关系式,并求出当一边长为2cm时长方形的面积;(3)从含盐20%的100千克的盐水中,把水分蒸发掉x千克后盐水浓度为y。求y与x之间的函数关系式。五、抽测达标,拓展延伸。函数值:(1)当已知函数解析式时,求函数值就是求代数式的值;给出函数值时
7、,求相应的自变量的值就是解方程;(2)当自变量确定时,函数值是唯一确定的,但当函数值唯一确定时,对应自变量可以是多个。备课组学科组教务处2用心爱心专心
此文档下载收益归作者所有