欢迎来到天天文库
浏览记录
ID:53269013
大小:115.47 KB
页数:19页
时间:2020-04-02
《全等三角形培优(含问题详解).doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、实用文档三角形培优练习题1已知:AB=4,AC=2,D是BC中点,AD是整数,求ADADBC2已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2ABCDEF213已知:∠1=∠2,CD=DE,EF//AB,求证:EF=ACBACDF21E实用文档4已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CACDB5已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE6如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠实用文档BCD,且点E在AD上。求证:BC=AB+DC。7已知:AB=CD,∠A=∠D,求证:∠B=∠CABCD
2、8.P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB3、14在△ABC中,,,直线经过点,且于,于.(1)当直线绕点旋转到图1的位置时,求证:①≌;②;(2)当直线绕点旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.实用文档15如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BFAEBMCF实用文档16.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由实用文档17.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠4、BDE.ABCDEF图9实用文档全等三角形证明经典(答案)1.延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD即BE=AC=2在三角形ABE中,AB-BE5、ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。所以三角形ABF和三角形AEF全等。所以∠BAF=∠EAF(∠1=∠2)。3证明:过E点,作EG//AC,交AD延长线于G则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴⊿ADC≌⊿GDE(AAS)∴EG=AC∵EF//AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=EG∴EF=AC4证明:在AC上截取AE=AB,连接ED∵AD平分∠BAC∴∠EAD=∠BAD实用文档又∵AE=AB,AD=AD∴⊿AED≌⊿ABD(SAS)∴∠AED=∠B,DE=DB∵AC=AB+BDAC=AE+CE∴CE=DE∴∠C=∠EDC∵∠AED6、=∠C+∠EDC=2∠C∴∠B=2∠C5证明:在AE上取F,使EF=EB,连接CF因为CE⊥AB所以∠CEB=∠CEF=90°因为EB=EF,CE=CE,所以△CEB≌△CEF所以∠B=∠CFE因为∠B+∠D=180°,∠CFE+∠CFA=180°所以∠D=∠CFA因为AC平分∠BAD所以∠DAC=∠FAC又因为AC=AC实用文档所以△ADC≌△AFC(SAS)所以AD=AF所以AE=AF+FE=AD+BE6证明:在BC上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A;AB平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=187、0°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD.7证明:设线段AB,CD所在的直线交于E,(当ADBC时,E点是射线AB,DC的交点)。则:△AED是等腰三角形。所以:AE=DE而AB=CD所以:BE=CE(等量加等量,或等量减等量)所以:△BEC是等腰三角形所以
3、14在△ABC中,,,直线经过点,且于,于.(1)当直线绕点旋转到图1的位置时,求证:①≌;②;(2)当直线绕点旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.实用文档15如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BFAEBMCF实用文档16.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由实用文档17.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠
4、BDE.ABCDEF图9实用文档全等三角形证明经典(答案)1.延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD即BE=AC=2在三角形ABE中,AB-BE5、ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。所以三角形ABF和三角形AEF全等。所以∠BAF=∠EAF(∠1=∠2)。3证明:过E点,作EG//AC,交AD延长线于G则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴⊿ADC≌⊿GDE(AAS)∴EG=AC∵EF//AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=EG∴EF=AC4证明:在AC上截取AE=AB,连接ED∵AD平分∠BAC∴∠EAD=∠BAD实用文档又∵AE=AB,AD=AD∴⊿AED≌⊿ABD(SAS)∴∠AED=∠B,DE=DB∵AC=AB+BDAC=AE+CE∴CE=DE∴∠C=∠EDC∵∠AED6、=∠C+∠EDC=2∠C∴∠B=2∠C5证明:在AE上取F,使EF=EB,连接CF因为CE⊥AB所以∠CEB=∠CEF=90°因为EB=EF,CE=CE,所以△CEB≌△CEF所以∠B=∠CFE因为∠B+∠D=180°,∠CFE+∠CFA=180°所以∠D=∠CFA因为AC平分∠BAD所以∠DAC=∠FAC又因为AC=AC实用文档所以△ADC≌△AFC(SAS)所以AD=AF所以AE=AF+FE=AD+BE6证明:在BC上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A;AB平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=187、0°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD.7证明:设线段AB,CD所在的直线交于E,(当ADBC时,E点是射线AB,DC的交点)。则:△AED是等腰三角形。所以:AE=DE而AB=CD所以:BE=CE(等量加等量,或等量减等量)所以:△BEC是等腰三角形所以
5、ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。所以三角形ABF和三角形AEF全等。所以∠BAF=∠EAF(∠1=∠2)。3证明:过E点,作EG//AC,交AD延长线于G则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴⊿ADC≌⊿GDE(AAS)∴EG=AC∵EF//AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=EG∴EF=AC4证明:在AC上截取AE=AB,连接ED∵AD平分∠BAC∴∠EAD=∠BAD实用文档又∵AE=AB,AD=AD∴⊿AED≌⊿ABD(SAS)∴∠AED=∠B,DE=DB∵AC=AB+BDAC=AE+CE∴CE=DE∴∠C=∠EDC∵∠AED
6、=∠C+∠EDC=2∠C∴∠B=2∠C5证明:在AE上取F,使EF=EB,连接CF因为CE⊥AB所以∠CEB=∠CEF=90°因为EB=EF,CE=CE,所以△CEB≌△CEF所以∠B=∠CFE因为∠B+∠D=180°,∠CFE+∠CFA=180°所以∠D=∠CFA因为AC平分∠BAD所以∠DAC=∠FAC又因为AC=AC实用文档所以△ADC≌△AFC(SAS)所以AD=AF所以AE=AF+FE=AD+BE6证明:在BC上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A;AB平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=18
7、0°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD.7证明:设线段AB,CD所在的直线交于E,(当ADBC时,E点是射线AB,DC的交点)。则:△AED是等腰三角形。所以:AE=DE而AB=CD所以:BE=CE(等量加等量,或等量减等量)所以:△BEC是等腰三角形所以
此文档下载收益归作者所有