欢迎来到天天文库
浏览记录
ID:58690268
大小:77.50 KB
页数:12页
时间:2020-10-08
《全等三角形练习题含问题详解.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、七年级全等测试 一.选择题(共3小题)1.如图,EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有( )A.4个B.3个C.2个D.1个2.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若BP=4,则PF的长( )A.2B.3C.1D.23.如图,OA=OC,OB=OD且OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC;其中
2、正确的结论是( )A.①②B.①②③C.①③D.②③ 二.解答题(共11小题)4.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC.(1)求证:∠ABD=∠ACD;(2)若∠ACB=65°,求∠BDC的度数.5.(1)如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试探究AB,AD,DC之间的等量关系,证明你的结论;(2)如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系
3、,证明你的结论.6.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.7.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.8.如图,在Rt△ABC,∠ACB=90°,AC=BC,分别过A、B作直线l的垂线,垂足分别为M、N.(1)求证:△AMC≌△CNB;(2)若AM=3,BN=5,求AB的
4、长.9.已知,如图,在等腰直角三角形中,∠C=90°,D是AB的中点,DE⊥DF,点E、F在AC、BC上,求证:DE=DF.10.如图,OC是∠MON的一条射线,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A,B,PA=PB,连接AB,AB与OP交于点E.(1)求证:△OPA≌△OPB;(2)若AB=6,求AE的长.11.如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.(1)CD与BE相等?若相等,请证明;若不相等,请说明理由;(2)若∠BAC=90°,求证:BF2+CD2=
5、FD2.12.如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA,PE⊥OB,垂足分别为D,E.F是OC上另一点,连接DF,EF.求证:DF=EF.13.如图,OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,点M在OA上,点N在OB上,且PM=PN.求证:EM=FN.14.如图,△ABC中,D为BC边上一点,BE⊥AD的延长线于E,CF⊥AD于F,BE=CF.求证:D为BC的中点.答案 一.选择题(共3小题)1.如图,EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△AC
6、N≌△ABM;④CD=DN.其中正确的结论有( )A.4个B.3个C.2个D.1个【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF∴BE=CF∠BAE=∠CAF∠BAE﹣∠BAC=∠CAF﹣∠BAC∴∠1=∠2△ABE≌△ACF∴∠B=∠C,AB=AC又∠BAC=∠CAB△ACN≌△ABM.④CD=DN不能证明成立,3个结论对.故选:B. 2.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若BP=4,则PF的长( )A.2B.3C.1D.2【解答】解:∵△ABC是等边
7、三角形,∴AB=AC.∴∠BAC=∠C.在△ABD和△CAE中,,∴△ABD≌△CAE(SAS).∴∠ABD=∠CAE.∴∠APD=∠ABP+∠PAB=∠BAC=60°.∴∠BPF=∠APD=60°.∵∠BFP=90°,∠BPF=60°,∴∠PBF=30°.∴PF=.故选:A. 3.如图,OA=OC,OB=OD且OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC;其中正确的结论是( )A.①②B.①②③C.①③D.②③【解答】解:∵OA⊥OB,OC⊥OD,∴∠AOB=∠COD=90°.∴∠AOB+∠AOC=∠COD+∠AO
8、C,即∠C
此文档下载收益归作者所有