欢迎来到天天文库
浏览记录
ID:52515765
大小:565.99 KB
页数:19页
时间:2020-03-28
《CMU高级机器学习变分推理.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、AdvancedMachineLearningVariationalInferenceEricXingLecture12,August12,2009Reading:EricXing©EricXing@CMU,2006-20091AnIsingmodelon2-DimageòNodesencodehiddeninformation(patch-identity).òTheyreceivelocalinformationfromtheimage(brightness,color).òInformationispropagatedthoughthe
2、graphoveritsedges.òEdgesencode‘compatibility’betweennodes.airorwater??EricXing©EricXing@CMU,2006-200921WhyApproximateInference?òTree-widthofNxNgraphisO(N)òNcanbeahugenumber(~1000sofpixels)òExactinferencewillbetooexpensive1⎧⎫p(X)=exp⎨∑θijXiXj+∑θi0Xi⎬Z⎩i3、CMU,2006-20093VariationalMethodsòForadistributionp(X4、θ)associatedwithacomplexgraph,computingthemarginal(orconditional)probabilityofarbitraryrandomvariable(s)isintractableòVariationalmethodsòformulatingprobabilisticinferenceasanoptimizationproblem:e.g.f*=argmaxormin{F(f)}f∈S5、a(tractable)probabilitydistributionf:or,solutionstocertainprobabilisticqueriesEricXing©EricXing@CMU,2006-200942BetheEnergyMinimizationEricXing©EricXing@CMU,2006-20095TheObjectiveòLetuscalltheactualdistributionPP(X)=1/Z∏fa(Xa)fa∈FòWewishtofindadistributionQsuchthatQisa“good”6、approximationtoPòRecallthedefinitionofKL-divergenceQ(X)1KL(Q17、8、Q2)=∑Q1(X)log()XQ2(X)òKL(Q9、10、Q)>=012òKL(Q11、12、Q)=0iffQ=Q1212òBut,KL(Q13、14、Q)≠KL(Q15、16、Q)1221EricXing©EricXing@CMU,2006-200963WhichKL?òComputingKL(P17、18、Q)requiresinference!òButKL(P19、20、Q)canbecomputedwithoutperforminginferenceo21、nPQ(X)KL(Q22、23、P)=∑Q(X)log()XP(X)=∑Q(X)logQ(X)−∑Q(X)logP(X)XX=−H(X)−ElogP(X)QQòUsingP(X)=1/Z∏fa(Xa)fa∈FKL(Q24、25、P)=−HQ(X)−EQlog(1/Z∏fa(Xa))fa∈F=−HQ(X)−log1/Z−∑EQlogfa(Xa)fa∈FEricXing©EricXing@CMU,2006-20097TheObjectiveòKL(Q26、27、P)=−HQ(X)−∑EQlogfa(Xa)+logZfa∈FF(P,Q)òWewillcallthe“Ene28、rgyFunctional”*F(P,Q)òF(P,P)=?òF(P,Q)>=F(P,P)*alsocalledGibbsFreeEnergyEricXing©EricXing@CMU,2006-200984TheEnergyFunctionalòLetuslookatthefunctionalF(P,Q)=−HQ(X)−∑EQlogfa(Xa)fa∈Fò∑EQlogfa(Xa)canbecomputedifwehavemarginalsovereachfafa∈FòHQ=−∑Q(X)logQ(X)isharder!Requiressumma29、tionoverallXpossiblevaluesòComputingF,isthereforehardingeneral.∧òApproach1:Approxi
3、CMU,2006-20093VariationalMethodsòForadistributionp(X
4、θ)associatedwithacomplexgraph,computingthemarginal(orconditional)probabilityofarbitraryrandomvariable(s)isintractableòVariationalmethodsòformulatingprobabilisticinferenceasanoptimizationproblem:e.g.f*=argmaxormin{F(f)}f∈S
5、a(tractable)probabilitydistributionf:or,solutionstocertainprobabilisticqueriesEricXing©EricXing@CMU,2006-200942BetheEnergyMinimizationEricXing©EricXing@CMU,2006-20095TheObjectiveòLetuscalltheactualdistributionPP(X)=1/Z∏fa(Xa)fa∈FòWewishtofindadistributionQsuchthatQisa“good”
6、approximationtoPòRecallthedefinitionofKL-divergenceQ(X)1KL(Q1
7、
8、Q2)=∑Q1(X)log()XQ2(X)òKL(Q
9、
10、Q)>=012òKL(Q
11、
12、Q)=0iffQ=Q1212òBut,KL(Q
13、
14、Q)≠KL(Q
15、
16、Q)1221EricXing©EricXing@CMU,2006-200963WhichKL?òComputingKL(P
17、
18、Q)requiresinference!òButKL(P
19、
20、Q)canbecomputedwithoutperforminginferenceo
21、nPQ(X)KL(Q
22、
23、P)=∑Q(X)log()XP(X)=∑Q(X)logQ(X)−∑Q(X)logP(X)XX=−H(X)−ElogP(X)QQòUsingP(X)=1/Z∏fa(Xa)fa∈FKL(Q
24、
25、P)=−HQ(X)−EQlog(1/Z∏fa(Xa))fa∈F=−HQ(X)−log1/Z−∑EQlogfa(Xa)fa∈FEricXing©EricXing@CMU,2006-20097TheObjectiveòKL(Q
26、
27、P)=−HQ(X)−∑EQlogfa(Xa)+logZfa∈FF(P,Q)òWewillcallthe“Ene
28、rgyFunctional”*F(P,Q)òF(P,P)=?òF(P,Q)>=F(P,P)*alsocalledGibbsFreeEnergyEricXing©EricXing@CMU,2006-200984TheEnergyFunctionalòLetuslookatthefunctionalF(P,Q)=−HQ(X)−∑EQlogfa(Xa)fa∈Fò∑EQlogfa(Xa)canbecomputedifwehavemarginalsovereachfafa∈FòHQ=−∑Q(X)logQ(X)isharder!Requiressumma
29、tionoverallXpossiblevaluesòComputingF,isthereforehardingeneral.∧òApproach1:Approxi
此文档下载收益归作者所有