量子芝诺效应与反芝诺效应.ppt

量子芝诺效应与反芝诺效应.ppt

ID:52362687

大小:251.00 KB

页数:18页

时间:2020-04-04

量子芝诺效应与反芝诺效应.ppt_第1页
量子芝诺效应与反芝诺效应.ppt_第2页
量子芝诺效应与反芝诺效应.ppt_第3页
量子芝诺效应与反芝诺效应.ppt_第4页
量子芝诺效应与反芝诺效应.ppt_第5页
资源描述:

《量子芝诺效应与反芝诺效应.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、量子芝诺效应与反芝诺效应王涛2007431002物理学指导老师:肖勇大纲:1.简述量子芝诺效应与反芝诺效应概念2.详述该问题的数学推导3.介绍该问题的发展历程、实验证明4.对相关应用性研究的展望1.简述量子芝诺效应(QuantumZenoEffect),又称量子水壶效应,它指出:频繁对一个不稳定系统进行量子测量会抑制或阻止它的衰变(跃迁)。极端而言,连续的量子测量将使不稳定系统稳定的保持在他的初态上,完全不发生衰变或跃迁。量子反芝诺效应(Quantumanti-Zenoeffects)指出:测量干扰会加速系统衰变注:该效应只是借用古希腊芝诺效应的名称,其数学本质并无太大联

2、系2.详述这一量子现象直接蕴含于量子理论公设中:第一公设:波函数公设第二公设:算符公设第三公设:测量公设(平均值公设)第四公设:体系动力学演化公设(薛定谔方程公设)数学表述任意不稳定量子系统,演化到t时刻,初态仍存活着不衰变的概率为:P(t)对时间求导:由薛定谔方程:得:代入:当t→0,取极限,得:t时刻初态仍存活着不衰变的概率P(t),其含义为: 自t=0开始演化后,直到t时刻,才执行初态存活与否的量子测量(且假设测量为理想的瞬间测量) 在[0,t]时间间隔内不另行插入这类测量。当N足够大时t/N足够小,可将P(t/N)展开:若将[0,t]区间分成N份,在每一时刻t

3、n=nt/N进行一次量子测量,只确认体系是否仍在初态上,则存活概率为:P(t/N) 如此反复测量,则t时刻做第N次测量时,初态存活概率为:令N→∞:由P’(0)=0,得:Pc=1即:当不稳定体系经受连续量子测量时,将会一直保持在它的初态上,不发生衰变或跃迁实验上,因无法实现连续测量,故检验实验多为:令N2>N1,检验PN2(t)>PN1(t)注:以上指的测量为完整意义下的量子测量,即包含纠缠分解、随机坍塌、初态演化三个阶段的量子测量它揭示了量子测量理论中,波包坍缩阶段下,量子体系演化时空坍缩的重要特征。与统计规律不矛盾量子反芝诺效应—加速衰变效应: 根据能量—时间不确定

4、性原理,足够频繁地测量必带给被测不稳定系统以很大的能量干扰,这种能量干扰更多的是加速而非减缓不稳定系统的衰变。 反芝诺效应对衰变的影响,视测量的性质、系统的性质、衰变曲线等而定3.理论发展历程和相关实验较早的关于这一效应的探索曾出现于阿兰图灵(AlanTuring)在1954年的描述:Itiseasytoshowusingstandardtheorythatifasystemstartsinaneigenstateofsomeobservable,andmeasurementsaremadeofthatobservable N timesasecond,then,eve

5、nifthestateisnotastationaryone,theprobabilitythatthesystemwillbeinthesamestateafter,say,onesecond,tendstooneas N tendstoinfinity;thatis,thatcontinualobservationswillpreventmotion…因此这一效应也被称为图灵悖论(Turingparadox)。相关描述也曾出现于冯诺依曼(JohnvonNeumann)的工作中,有时被称为减数假设(Reduction Postulate)。量子芝诺效应这一名称,来自于的

6、德克萨斯大学的GeorgeSudarshan和BaidyanathMisra在1977年的一篇分析性文章:“TheZeno’sparadoxinquantumtheory”。实验方面:1989年,DavidWineland和他在美国国家标准与技术研究所(NIST)的团队,在钡离子二能级原子系统演化实验中观察到了量子芝诺效应的迹象。实验结果与理论模型相符合。2001年,MarkG.Raizen和他在德克萨斯大学奥斯汀分校的团队,在超冷钠原子光晶格加速和量子隧穿实验中,观察到了早先由不稳定量子系统中的量子芝诺效应和反芝诺效应。2006年,Streed等麻省理工的研究者们观察到

7、了基于量子芝诺效应的测量脉冲特性。当一束极化光(如初始向y方向极化)通过一系列的法拉第介质时,光的极化方向会慢慢偏转,比如会偏到x方向。如果我们在法拉第介质中间加入一系列光栅来测量其y分量的大小,光的极化方向的偏转速度会被极大的压制。进一步让测量的次数趋向无穷大,也就是进行连续测量,我们会发现,光的极化方向就不再偏转,强度也不会减弱。经典光学中的芝诺效应的例子(香港中文大学)4.相关理论、应用研究展望理论方面:它揭示了量子测量理论中,波包坍缩阶段下,量子体系演化时空坍缩的重要特征帮助解释核内中子不按自由中子衰变的原因Weals

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。