欢迎来到天天文库
浏览记录
ID:51901315
大小:2.75 MB
页数:71页
时间:2020-03-18
《数学中考全国各地分类汇编带解析54 图形的旋转变换.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题54:图形的旋转变换一、选择题1.(2012天津市3分)将下列图形绕其对角线的交点逆时针旋转900,所得图形一定与原图形重合的是【】(A)平行四边形(B)矩形(C)菱形(D)正方形【答案】D。【考点】旋转对称图形【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件:此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形。故选D。2.(2012广东佛山3分)如图,把一个斜边长为2且含有300角的直角三角板ABC绕直角顶点C顺时针旋转900到△A1B1C,则在旋转过程中这个三角板扫过的图形的面积是【】A.πB.C.D.【答案】D
2、。【考点】旋转的性质,勾股定理,等边三角形的性质,扇形面积。【分析】因为旋转过程中这个三角板扫过的图形的面积分为三部分扇形ACA1、BCD和△ACD计算即可:在△ABC中,∠ACB=90°,∠BAC=30°,AB=2,∴BC=AB=1,∠B=90°-∠BAC=60°。∴。∴。设点B扫过的路线与AB的交点为D,连接CD,∵BC=DC,∴△BCD是等边三角形。∴BD=CD=1。∴点D是AB的中点。∴S。∴故选D。3.(2012广东汕头4分)如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BC
3、A′的度数是【】A.110°B.80°C.40°D.30°【答案】B。【考点】旋转的性质,三角形内角和定理。【分析】根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°。∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°。∴∠ACB=30°。∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°,故选B。4.(2012江苏苏州3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,则∠A
4、OB'的度数是【】A.25°B.30°C.35°D.40°【答案】B。【考点】旋转的性质。【分析】根据旋转的性质,旋转前后图形全等以及对应边的夹角等于旋转角,从而得出答案:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA-∠A′OB=45°-15°=30°。故选B。5.(2012福建龙岩4分)如图,矩形ABCD中,AB=1,BC=2,把矩形ABCD绕AB所在直线旋转一周所得圆柱的侧面积为【】A.B.C.D.2【答案】B。【考点】矩形的性质,旋转的性质
5、。【分析】把矩形ABCD绕AB所在直线旋转一周所得圆柱是以BC=2为底面半径,AB=1为高。所以,它的侧面积为。故选B。6.(2012湖北十堰3分)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④;⑤.其中正确的结论是【】A.①②③⑤B.①②③④C.①②③④⑤D.①②③【答案】A。【考点】旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理的逆定
6、理。【分析】∵正△ABC,∴AB=CB,∠ABC=600。∵线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,∴BO=BO′,∠O′AO=600。∴∠O′BA=600-∠ABO=∠OBA。∴△BO′A≌△BOC。∴△BO′A可以由△BOC绕点B逆时针旋转60°得到。故结论①正确。连接OO′,∵BO=BO′,∠O′AO=600,∴△OBO′是等边三角形。∴OO′=OB=4。故结论②正确。∵在△AOO′中,三边长为O′A=OC=5,OO′=OB=4,OA=3,是一组勾股数,∴△AOO′是直角三角形。∴∠AOB=∠AOO′+∠O′OB=9
7、00+600=150°。故结论③正确。。故结论④错误。如图所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形。则。故结论⑤正确。综上所述,正确的结论为:①②③⑤。故选A。7.(2012湖南岳阳3分)如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是【】A.B.C.D.【答案】B
8、。【考点】旋转问题的函数图象,正方形的性质,旋转的性质,全等三角形的判定和性质。【分析】如图,过点E作EM⊥BC于点M,EN⊥AB于点N,∵点E是正方形的对称中心,∴EN=EM,EMBN是正方
此文档下载收益归作者所有