《二次函数的应用》课件1(28张PPT)(沪科版九年级上).ppt

《二次函数的应用》课件1(28张PPT)(沪科版九年级上).ppt

ID:51521854

大小:471.00 KB

页数:19页

时间:2020-03-22

《二次函数的应用》课件1(28张PPT)(沪科版九年级上).ppt_第1页
《二次函数的应用》课件1(28张PPT)(沪科版九年级上).ppt_第2页
《二次函数的应用》课件1(28张PPT)(沪科版九年级上).ppt_第3页
《二次函数的应用》课件1(28张PPT)(沪科版九年级上).ppt_第4页
《二次函数的应用》课件1(28张PPT)(沪科版九年级上).ppt_第5页
资源描述:

《《二次函数的应用》课件1(28张PPT)(沪科版九年级上).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、二次函数的应用专题一:数形结合法简单的应用(学会画图)已知二次函数的图象与x轴交于A(-2,0),B(3,0)两点,且函数有最大值2。求二次函数的解析式;设此二次函数图象顶点为P,求△ABP的面积在直角坐标系中,点A在y轴的正半轴上,点B在x轴的负半轴上,点C在x轴的正半轴上,AC=5,BC=4,cos∠ACB=3/5。求A、B、C三点坐标;若二次函数图象经过A、B、C三点,求其解析式;求二次函数的对称轴和顶点坐标二次函数的应用专题二:二次函数的最值应用题二次函数最值的理论求函数y=(m+1)x2-2(m+1)x-m的最值。其中m为常数且m≠-1。最值应用题——面积最大某工厂为了存

2、放材料,需要围一个周长160米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大。窗的形状是矩形上面加一个半圆。窗的周长等于6m,要使窗能透过最多的光线,它的尺寸应该如何设计?BCDAO最值应用题——面积最大用一块宽为1.2m的长方形铁板弯起两边做一个水槽,水槽的横断面为底角120º的等腰梯形。要使水槽的横断面积最大,它的侧面AB应该是多长?AD120ºBC最值应用题——路程问题快艇和轮船分别从A地和C地同时出发,各沿着所指方向航行(如图所示),快艇和轮船的速度分别是每小时40km和每小时16km。已知AC=145km,经过多少时间,快艇和轮船之间的距离最短?(图中AC

3、⊥CD)DCA145km最值应用题——销售问题某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈利最多?最值应用题——销售问题某商场以每件42元的价钱购进一种服装,根据试销得知这种服装每天的销售量t(件)与每件的销售价x(元/件)可看成是一次函数关系:t=-3x+204。写出商场卖这种服装每天销售利润y(元)与每件的销售价x(元)间的函数关系式

4、;通过对所得函数关系式进行配方,指出商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适?最大利润为多少?最值应用题——运动观点在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B出发沿BC边向点C以2cm/秒的速度移动。如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:运动开始后第几秒时,△PBQ的面积等于8cm2设运动开始后第t秒时, 五边形APQCD的面积为Scm2,写出S与t的函数关系式, 并指出自变量t的取值范围;t为何值时S最小?求出S的最小值。QPCBAD最值应用题——运动观点在△A

5、BC中,BC=2,BC边上的高AD=1,P是BC上任一点,PE∥AB交AC于E,PF∥AC交AB于F。设BP=x,将S△PEF用x表示;当P在BC边上什么位置时,S值最大。DFEPCBA在取值范围内的函数最值二次函数的应用专题三:二次函数综合应用题如图所示,公园要建造圆形喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25米。由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1米处达到距水面最大高度2.25米。(1)如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外

6、?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5米,要使水流不落到池外,此时水流的最大高度应达到多少米?(精确到0.1米)OA某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算)。设销售单价为x元,日均获利为y元。求y关于x的函数关系式,并注明x的取值范围。将上面所求出的函数配方成顶点式,写出顶点坐标。并指出单价定为多少元时日均获

7、利最多,是多少?某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件)。在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面32/3米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。