欢迎来到天天文库
浏览记录
ID:50889922
大小:270.50 KB
页数:3页
时间:2020-03-15
《经济数学基础导数应用部分综合练习(答案).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、经济数学基础导数应用部分综合练习1.设生产某种产品个单位时的成本函数为:(万元),求:(1)当时的总成本、平均成本和边际成本;(2)当产量为多少时,平均成本最小?解(1)因为总成本、平均成本和边际成本分别为:,所以,,(2)令,得(舍去)因为是其在定义域内唯一驻点,且该问题确实存在最小值,所以当20时,平均成本最小.2.某厂生产某种产品q件时的总成本函数为C(q)=20+4q+0.01q2(元),单位销售价格为p=14-0.01q(元/件),问产量为多少时可使利润达到最大?最大利润是多少.解由已知利润函数则,令,解出唯一驻点.因为利润函数存在着最大值,所
2、以当产量为250件时可使利润达到最大,且最大利润为(元)3.某厂每天生产某种产品件的成本函数为(元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少?解因为==()==令=0,即=0,得=140,=-140(舍去).=140是在其定义域内的唯一驻点,且该问题确实存在最小值.所以=140是平均成本函数的最小值点,即为使平均成本最低,每天产量应为140件.此时的平均成本为==176(元/件)4.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为(为需求量,为价格).试求:(1)成本函数,收入函
3、数;(2)产量为多少吨时利润最大?解(1)成本函数=60+2000.因为,即,所以收入函数==()=.(2)因为利润函数=-=-(60+2000)=40--2000且=(40--2000=40-0.2令=0,即40-0.2=0,得=200,它是在其定义域内的唯一驻点.所以,=200是利润函数的最大值点,即当产量为200吨时利润最大.5.投产某产品的固定成本为36(万元),且边际成本为=2x+40(万元/百台).试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低.解当产量由4百台增至6百台时,总成本的增量为==100(万元)又=
4、=令,解得.x=6是惟一的驻点,而该问题确实存在使平均成本达到最小的值.所以产量为6百台时可使平均成本达到最小.6.已知某产品的边际成本(x)=2(元/件),固定成本为0,边际收益(x)=12-0.02x,问产量为多少时利润最大?在最大利润产量的基础上再生产50件,利润将会发生什么变化?解因为边际利润=12-0.02x–2=10-0.02x令=0,得x=500x=500是惟一驻点,而该问题确实存在最大值.所以,当产量为500件时,利润最大.当产量由500件增加至550件时,利润改变量为=500-525=-25(元)即利润将减少25元.7.生产某产品的边际
5、成本为(x)=8x(万元/百台),边际收入为(x)=100-2x(万元/百台),其中x为产量,问产量为多少时,利润最大?从利润最大时的产量再生产2百台,利润有什么变化?解(x)=(x)-(x)=(100–2x)–8x=100–10x令(x)=0,得x=10(百台)又x=10是L(x)的唯一驻点,该问题确实存在最大值,故x=10是L(x)的最大值点,即当产量为10(百台)时,利润最大.又即从利润最大时的产量再生产2百台,利润将减少20万元.8.已知某产品的边际成本为(万元/百台),为产量(百台),固定成本为18(万元),求最低平均成本.解:因为总成本函数为
6、=当=0时,C(0)=18,得c=18即C()=又平均成本函数为令,解得=3(百台)该题确实存在使平均成本最低的产量.所以当q=3时,平均成本最低.最底平均成本为(万元/百台)9.设生产某产品的总成本函数为(万元),其中x为产量,单位:百吨.销售x百吨时的边际收入为(万元/百吨),求:(1)利润最大时的产量;(2)在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?解:(1)因为边际成本为,边际利润=14–2x令,得x=7由该题实际意义可知,x=7为利润函数L(x)的极大值点,也是最大值点.因此,当产量为7百吨时利润最大.(2)当产量由7百吨增加
7、至8百吨时,利润改变量为=112–64–98+49=-1(万元)即利润将减少1万元.
此文档下载收益归作者所有