高考数学第四章三角函数、解三角形第7讲解三角形应用举例高效演练分层突破文新人教A版.docx

高考数学第四章三角函数、解三角形第7讲解三角形应用举例高效演练分层突破文新人教A版.docx

ID:50620535

大小:227.00 KB

页数:7页

时间:2020-03-12

高考数学第四章三角函数、解三角形第7讲解三角形应用举例高效演练分层突破文新人教A版.docx_第1页
高考数学第四章三角函数、解三角形第7讲解三角形应用举例高效演练分层突破文新人教A版.docx_第2页
高考数学第四章三角函数、解三角形第7讲解三角形应用举例高效演练分层突破文新人教A版.docx_第3页
高考数学第四章三角函数、解三角形第7讲解三角形应用举例高效演练分层突破文新人教A版.docx_第4页
高考数学第四章三角函数、解三角形第7讲解三角形应用举例高效演练分层突破文新人教A版.docx_第5页
资源描述:

《高考数学第四章三角函数、解三角形第7讲解三角形应用举例高效演练分层突破文新人教A版.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第7讲 解三角形应用举例[基础题组练]1.在相距2km的A,B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则A,C两点之间的距离为(  )A.km         B.kmC.kmD.2km解析:选A.如图,在△ABC中,由已知可得∠ACB=45°,所以=,所以AC=2×=(km).2.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于(  )A.5B.15C.5D.15解析:选D

2、.在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得=,所以BC=15.在Rt△ABC中,AB=BCtan∠ACB=15×=15.3.如图,为了测量A,C两点间的距离,选取同一平面上B,D两点,测出四边形ABCD各边的长度(单位:km):AB=5,BC=8,CD=3,DA=5,且∠B与∠D互补,则AC的长为(  )A.7kmB.8kmC.9kmD.6km解析:选A.在△ABC及△ACD中,由余弦定理得82+52-2×8×5×cos(π-∠D)=AC2=32+52-2×3×5×cos∠D,解得co

3、s∠D=-,所以AC==7.4.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是(  )A.10海里B.10海里C.20海里D.20海里解析:选A.如图所示,易知,在△ABC中,AB=20,∠CAB=30°,∠ACB=45°,根据正弦定理得=,解得BC=10(海里).5.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高

4、是60m,则河流的宽度BC等于(  )A.240(-1)mB.180(-1)mC.120(-1)mD.30(+1)m解析:选C.因为tan15°=tan(60°-45°)==2-,所以BC=60tan60°-60tan15°=120(-1)(m).6.海上有A,B两个小岛相距10nmile,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,那么B岛和C岛间的距离是nmile.解析:如图,在△ABC中,AB=10,A=60°,B=75°,C=45°,由正弦定理,得=,所以BC===5(nmile).答

5、案:57.如图,在塔底D的正西方A处测得塔顶的仰角为45°,在塔底D的南偏东60°的B处测得塔顶的仰角为30°,A,B间的距离是84m,则塔高CD=m.解析:设塔高CD=xm,则AD=xm,DB=xm.又由题意得∠ADB=90°+60°=150°,在△ABD中,利用余弦定理,得842=x2+(x)2-2·x2cos150°,解得x=12(负值舍去),故塔高为12m.答案:128.一船自西向东匀速航行,上午10时到达灯塔P的南偏西75°,距灯塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则此船航行的速度为海里

6、/小时.解析:如图,由题意知∠MPN=75°+45°=120°,∠PNM=45°.在△PMN中,=,所以MN=68×=34(海里).又由M到N所用的时间为14-10=4(小时),所以此船的航行速度v==(海里/小时).答案:9.渔政船在东海某海域巡航,已知该船正以15海里/时的速度向正北方向航行,该船在A点处时发现在北偏东30°方向的海面上有一个小岛,继续航行20分钟到达B点,此时发现该小岛在北偏东60°方向上,若该船向正北方向继续航行,船与小岛的最小距离为多少海里?解:根据题意画出相应的图形,如图所示,过C作CD⊥

7、AD于点D,由题意得:AB=×15=5(海里),因为∠A=30°,∠CBD=60°,所以∠BCA=30°,所以△ABC为等腰三角形,所以BC=5.在△BCD中,因为∠CBD=60°,CD⊥AD,BC=5,所以CD=,则该船向北继续航行,船与小岛的最小距离为7.5海里.10.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°,从C点测得∠MCA=60°.已知山高BC=100m,求山高MN.解:根据题意,AC=100m.在△MA

8、C中,∠CMA=180°-75°-60°=45°.由正弦定理得=⇒AM=100m.在△AMN中,=sin60°,所以MN=100×=150(m).[综合题组练]1.如图所示,一座建筑物AB的高为(30-10)m,在该建筑物的正东方向有一座通信塔CD.在它们之间的地面上的点M(B,M,D三点共线)处测得楼顶A,塔顶C的仰角分别是15°和60°,在

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。