欢迎来到天天文库
浏览记录
ID:50381453
大小:1.27 MB
页数:14页
时间:2020-03-05
《圆锥曲线解题技巧教(学)案整理后1.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、.椭圆一、知识表格项目内容第一定义平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫椭圆。第二定义平面内到定点与到定直线的距离之比为常数的点的轨迹叫椭圆。图形标准方程几何性质范围顶点与长短轴的长焦点焦距准线方程焦半径左下焦准距离心率(越小,椭圆越近似于圆)准线间距对称性椭圆都是关于轴成轴对称,关于原点成中心对称通径焦点三角形椭圆上一点与椭圆的两个焦点组成的三角形,其周长为,解题中常用余弦定理和勾股定理来进行相关的计算焦点弦三角形椭圆的一焦点与过另一焦点的弦组成的三角形,其周长为。参数方程为参数)为参数)注意:....1、椭圆按向量平移后的方程为:或,平移不改变点与点之间的相
2、对位置关系(即椭圆的焦准距等距离不变)和离心率。2、弦长公式:已知直线:与曲线交于两点,则或3、中点弦问题的方法:①方程组法,②代点作差法。两种方法总体都体现高而不求的数学思想。双曲线项目内容第一定义平面内与两个定点的距离之差等于常数(小于)的点的轨迹叫双曲线。第二定义平面内到定点与到定直线的距离之比为常数的点的轨迹叫双曲线。图形标准方程几何性质范围顶点与实虚轴的长焦点焦距准线方程焦半径当在右支上时左当在左支上时左当在上支上时下当在下支上时下渐近线方程焦准距....离心率(越小,双曲线开口越小),等轴双曲线的准线间距对称性双曲线都是关于轴成轴对称,关于原点成中心对称通径焦点三角
3、形双曲线上一点与双曲线的两个焦点组成的三角形,解题中常用余弦定理和勾股定理来进行相关的计算焦点弦三角形双曲线的一焦点与过另一焦点的弦组成的三角形。参数方程为参数)为参数)项目内容定义平面内到定点的距离等于到定直线距离的点的轨迹叫抛物线。图形标准方程几何性质范围开口方向向右向左向上向下焦准距顶点坐标坐标原点(0,0)焦点坐标准线方程对称轴轴轴轴轴离心率通径长焦半径抛物线一、焦点弦的结论:(针对抛物线:....其中),为过焦点的弦,则1、焦点弦长公式:2、通径是焦点弦中最短的弦其长为3、,,4、以焦点弦为直径的圆与抛物线的准线相切5、已知、在准线上的射影分别为、,则三点、、共线,同
4、时、、三点也共线6、已知、在准线上的射影分别为、,则7、二、顶点直角三角形:直角顶点在抛物线顶点的三角形与其对称轴交于一个定点,反之,过定点的弦所对的顶点角为直角。三、从抛物线的焦点出发的光线经抛物线反射后与抛物线的对称轴平行。圆锥曲线―概念、方法、题型、及应试技巧总结1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于
5、FF
6、,定义中的“绝对值”与<
7、FF
8、不可忽视。若=
9、FF
10、
11、,则轨迹是以F,F为端点的两条射线,若﹥
12、FF
13、,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。如方程表示的曲线是_____(答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。如已知点及抛物线上一动点P(x,y),则y+
14、PQ
15、的最小值是_____(答2)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在轴上时(),
16、焦点在轴上时=1()。方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。....如(1)已知方程表示椭圆,则的取值范围为____(答:);(2)若,且,则的最大值是____,的最小值是___(答:)(2)双曲线:焦点在轴上:=1,焦点在轴上:=1()。方程表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。如设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,则C的方程为_______(答:)(3)抛物线:开口向右时,开口向左时,开口向上时,开口向下时。如定长为3的线段AB的两个端点在y=x2上移动,AB中点为M,求点M到x轴的最短距离。3.圆
17、锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。如已知方程表示焦点在y轴上的椭圆,则m的取值范围是__(答:)(2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、
此文档下载收益归作者所有