资源描述:
《圆锥曲线解题技巧教案整理后》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、圆锥曲线―概念、方法、题型、及应试技巧总结 1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于
2、FF
3、,定义中的“绝对值”与<
4、FF
5、不可忽视。若=
6、FF
7、,则轨迹是以F,F为端点的两条射线,若﹥
8、FF
9、,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方程表示的曲线是_____(答:双曲线的左支) (2)第二定义中
10、要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点及抛物线上一动点P(x,y),则y+
11、PQ
12、的最小值是_____(答2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在轴上时(),焦点在轴上时=1()。方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。 如(1)已知方程表示椭圆,则的
13、取值范围为____(答:); (2)若,且,则的最大值是____,的最小值是___(答:) (2)双曲线:焦点在轴上:=1,焦点在轴上:=1()。方程表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。 如设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,则C的方程为_______(答:) (3)抛物线:开口向右时,开口向左时,开口向上时,开口向下时。 如定长为3的线段AB的两个端点在y=x2上移动,AB中点为M,求点M到x轴的最短距离。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆
14、:由,分母的大小决定,焦点在分母大的坐标轴上。 如已知方程表示焦点在y轴上的椭圆,则m的取值范围是__(答:) (2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,,在双曲线中,
15、最大,。 4.圆锥曲线的几何性质: (1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。 如(1)若椭圆的离心率,则的值是__(答:3或); (2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(答:) (2)双曲线(以()为例):①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为
16、2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤离心率:,双曲线,等轴双曲线,越小,开口越小,越大,开口越大;⑥两条渐近线:。 如(1)双曲线的渐近线方程是,则该双曲线的离心率等于______(答:或); (2)双曲线的离心率为,则=(答:4或); (3)设双曲线(a>0,b>0)中,离心率e∈[,2],则两条渐近线夹角(锐角或直角)θ的取值范围是________(答:); (4)已知F1、F2为双曲线的左焦点,顶点为A1、A2,是双曲线上任意一点,则分别以线段PF1、A1A2为直径的两圆一定(
17、) A.相交B.相切 C.相离D.以上情况均有可能 (3)抛物线(以为例):①范围:;②焦点:一个焦点,其中的几何意义是:焦点到准线的距离;③对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);④准线:一条准线;⑤离心率:,抛物线。 如设,则抛物线的焦点坐标为________(答:); 5、点和椭圆()的关系:(1)点在椭圆外;(2)点在椭圆上=1;(3)点在椭圆内 6.直线与圆锥曲线的位置关系: (1)相交:直线与椭圆相交;直线与双曲线相交,但直线与双曲线相交不一定有,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一
18、个交点,故是直线与双曲线相交的充分条件,但不是必要条件;直线与抛物线相交,但直线与抛物线相交不一定有,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,