切线的判断定理.ppt

切线的判断定理.ppt

ID:50102717

大小:1.18 MB

页数:18页

时间:2020-03-04

切线的判断定理.ppt_第1页
切线的判断定理.ppt_第2页
切线的判断定理.ppt_第3页
切线的判断定理.ppt_第4页
切线的判断定理.ppt_第5页
资源描述:

《切线的判断定理.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、北师大版九年级下册第三章《圆》上安学校:包秀兰3.6直线和圆的位置关系(第二课时)直线和圆相交drdr直线和圆相切直线和圆相离dr●O●O相交●O相切相离rrr┐dd┐d┐<=>如图,AB是⊙O的直径,直线l经过点A,l与AB的夹角为∠α,当l绕点A顺时针旋转时,圆心O到直线l的距离d如何变化?B●OAl┓dα┏dαd┓你能写出一个命题来表述这个事实吗?经过直径的一端,并且垂直于这条直径的直线是圆的切线.CDB●OA∵AB是⊙O的直径,直线CD经过A点,且CD⊥AB,∴CD是⊙O的切线.这个定理实际上就是:d=r直线和圆相切的另一种说法。例:如图:AB是⊙O

2、的直径,∠ABT=450,AT=BA.求证:AT是⊙O的切线.ATBO1.如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB,那么直线AB是⊙O的切线吗?OABCO1.由定理可知:经过三角形三个顶点可以作一个圆。2.经过三角形各顶点的圆叫做三角形的外接圆。3.三角形外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形。ABC三角形与圆的位置关系(回顾)探索:从一块三角形材料中,能否剪下一个圆,使其与各边都相切?ABCABC┓┗┗┓I●●●●●┓┗┗┓┗┗┓┗┗I●┓●上右图就是三角形的内切圆作法:D(1)作∠ABC、∠ACB的平分线BM

3、和CN,交点为I.(2)过点I作ID⊥BC,垂足为D.(3)以I为圆心,ID为半径作⊙I,⊙I就是所求MN这样的圆可以作出几个呢?为什么?∵直线BE和CF只有一个交点I,并且点I到△ABC三边的距离相等(为什么?),因此和△ABC三边都相切的圆可以作出一个,并且只能作一个.ABCI●┓●EF定义:与三角形三边都相切的圆叫做三角形的内切圆.这个三角形叫做圆的外切三角形.内切圆的圆心叫做三角形的内心,是三角形三条角平分线的交点.分别作出锐角三角形,直角三角形,钝角三角形的内切圆,并说明与它们内心的位置情况?提示:先确定圆心和半径,尺规作图要保留作图痕迹.ABCA

4、BC●●●CAB┐判断题:1.三角形的内心到三角形各个顶点的距离相等。()2.三角形的外心到三角形各边的距离相等。()3.等边三角形的内心和外心重()错错对4、三角形的内心一定在三角形的内部()5、菱形一定有内切圆()6、矩形一定有内切圆()对错对例2:如图,在△ABC中,点O是内心,(1)若∠ABC=50°,∠ACB=70°,求∠BOC的度数ABCO(2)若∠A=80度,则∠BOC=(3)若∠BOC=110度,则∠A=130401。已知:如图,⊙O是Rt△ABC的内切圆,∠C是直角,∠AC=3,BC=4.求⊙O的半径r.●ABC●┏OABC●┏O●┗┓OD

5、EF┗Rt△的三边长与其内切圆半径间的关系bac已知:如图,△ABC的面积S=4cm2,周长等于10cm.求内切圆⊙O的半径r.●ABC●O●┗┓ODEF┗三角形的三边长及面积与其内切圆半径间的关系思考题:如图,某乡镇在进入镇区的道路交叉口的三角地处建造了一座镇标雕塑,以树立起文明古镇的形象。已知雕塑中心M到道路三边AC、BC、AB的距离相等,AC⊥BC,BC=30米,AC=40米。请你帮助计算一下,镇标雕塑中心M离道路三边的距离有多远?ACB古镇区镇商业区镇工业区.MEDF谢谢

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。