三角形内角和定理的证明.5三角形的内角和定理(1).ppt

三角形内角和定理的证明.5三角形的内角和定理(1).ppt

ID:49941792

大小:216.50 KB

页数:15页

时间:2020-03-04

三角形内角和定理的证明.5三角形的内角和定理(1).ppt_第1页
三角形内角和定理的证明.5三角形的内角和定理(1).ppt_第2页
三角形内角和定理的证明.5三角形的内角和定理(1).ppt_第3页
三角形内角和定理的证明.5三角形的内角和定理(1).ppt_第4页
三角形内角和定理的证明.5三角形的内角和定理(1).ppt_第5页
资源描述:

《三角形内角和定理的证明.5三角形的内角和定理(1).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、证明命题的一般步骤:与同伴交流你在探索思路的过程中的具体做法.(1)理解题意:分清命题的条件(已知),结论(求证);(2)根据题意,画出图形;(3)结合图形,用符号语言写出“已知”和“求证”;(4)分析题意,探索证明思路;(5)依据思路,运用数学符号和数学语言条理清晰地写出证明过程;(6)检查表达过程是否正确,完善.复习旧知我们知道三角形三个内角的和等于1800.你还记得这个结论的探索过程吗?112ABD23C(1)如图,当时我们是把∠A移到了∠1的位置,∠B移到了∠2的位置.如果不实际移动∠A和∠B,那么你还有其它方法可以达到同样的效果?(2)根据前面的公理和定理,你能用自己的

2、语言说说这一结论的证明思路吗?你能用比较简捷的语言写出这一证明过程吗?与同伴交流.三角形内角和定理三角形三个内角的和等于1800.情境导入已知:如图6-9,△ABC.求证:∠A+∠B+∠C=1800.证明:作BC的延长线CD,过点C作CE∥AB,则你还有其它方法来证明三角形内角和定理吗?.∠1=∠A(两直线平行,内错角相等),∠2=∠B(两直线平行,同位角相等).又∵∠1+∠2+∠3=1800(平角的定义),∴∠A+∠B+∠ACB=1800(等量代换).分析:延长BC到D,过点C作射线CE∥AB,这样,就相当于把∠A移到了∠1的位置,把∠B移到了∠2的位置.这里的CD,CE称为辅

3、助线,辅助线通常画成虚线.ABCE213D讲授新课例1如图在△ABC中,∠ABC=38°,∠ACB=62°,AD平分∠BAC,求∠ADB的度数。解:在△ABC中,∠B+∠C+∠BAC=180°∵∠B=38°,∠C=62°∴∠BAC=80°∵∠BAD=∠CAD=1/2∠BAC=40°在△ABD中,∠B+∠BAD+∠ADB=180°∵∠B=38°,∠BAD=40°∴∠ADB=102°ABCD讲授新课这节课你学习了什么知识?我学习了:如何利用三角形的内角和求角的度数课堂小结在证明三角形内角和定理时,小明的想法是把三个角“凑”到A处,他过点A作直线PQ∥BC(如图),他的想法可以吗?请你

4、帮小明把想法化为实际行动.小明的想法已经变为现实,由此你受到什么启发?你有新的证法吗?证明:过点A作PQ∥BC,则ABC∠1=∠B(两直线平行,内错角相等),∠2=∠C(两直线平行,内错角相等),又∵∠1+∠2+∠3=1800(平角的定义),∴∠BAC+∠B+∠C=1800(等量代换).所作的辅助线是证明的一个重要组成部分,要在证明时首先叙述出来.PQ231议一议三角形内角和定理三角形三个内角的和等于1800.△ABC中,∠A+∠B+∠C=1800.∠A+∠B+∠C=1800的几种变形:∠A=1800–(∠B+∠C).∠B=1800–(∠A+∠C).∠C=1800–(∠A+∠B)

5、.∠A+∠B=1800-∠C.∠B+∠C=1800-∠A.∠A+∠C=1800-∠B.这里的结论,以后可以直接运用.ABC三角形内角和定理1.直角三角形的两锐角之和是多少度?等边三角形的一个内角是多少度?请证明你的结论.已知:如图在△ABC中,DE∥BC,∠A=600,∠C=700.求证:∠ADE=500..DCBAEABCABC结论:直角三角形的两个锐角互余.以后可以直接运用.随堂练习用运动变化的观点理解和认识数学在△ABC中,如果BC不动,把点A“压”向BC,那么当点A越来越接近BC时,∠A就越来越大(越来越接近1800),而∠B和∠C,越来越小(越来越接近00).由此你能想

6、到什么?如果BC不动,把点A“拉离”BC,那么当A越来越远离BC时,∠A就越来越小(越来越接近00),而∠B和∠C则越来越大,它们的和越来越接近1800,当把点A拉到无穷远时,便有AB∥AC,∠B和∠C成为同旁内角,它们的和等于1800.由此你能想到什么?CBACBA1、如图,已知△ABC中,∠B和∠C的平分线BE,CF交点O.求证:∠BOC=90°+ABCEFO随堂练习2、如图,已知AD是△ABD和△ACD的公共边.求证:∠BDC=∠BAC+∠B+∠CABCD1234证法一:∵在△ABD中,∠1=180°-∠B-∠3,在△ADC中,∠2=180°-∠C-∠4(三角形内角和定理)

7、,又∵∠BDC=360°-∠1-∠2(周角定义)∴∠BDC=360°-(180°-∠B-∠3)-(180°-∠C-∠4)=∠B+∠C+∠3+∠4.又∵∠BAC=∠3+∠4,∴∠BDC=∠B+∠C+∠BAC(等量代换)(等量代换)随堂练习2、如图,已知AD是△ABD和△ACD的公共边.求证:∠BDC=∠BAC+∠B+∠C证法二:ABCD12随堂练习如图,已知∠AMN+∠MNF+∠NFC=360°,求证:AB∥CD(用两种方法证明)DFNMBAC随堂练习习题7.61,2,3题;作业人

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。