曲线和方程优秀教案.doc

曲线和方程优秀教案.doc

ID:49717803

大小:110.01 KB

页数:7页

时间:2020-03-03

曲线和方程优秀教案.doc_第1页
曲线和方程优秀教案.doc_第2页
曲线和方程优秀教案.doc_第3页
曲线和方程优秀教案.doc_第4页
曲线和方程优秀教案.doc_第5页
资源描述:

《曲线和方程优秀教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《曲线和方程》教案【课题】曲线和方程【教材】人教版普通高中课程标准实验教科书——数学选修2-1【教学目标】◆知识目标:1、了解曲线上的点与方程的解之间的一一对应关系;2、初步领会“曲线的方程”与“方程的曲线”的概念;3、学会根据已有的情景资料找规律,进而分析、判断、归纳结论;4、强化“形”与“数”一致并相互转化的思想方法。◆能力目标:1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;2、在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点;3、能用所学

2、知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识;◆情感目标:1、通过概念的引入,让学生感受从特殊到一般的认知规律;2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。【教学重点】“曲线的方程”与“方程的曲线”的概念【教学难点】怎样利用定义验证曲线是方程的曲线,方程是曲线的方程19/7【教学方法】问题探索和启发引导式相结合【教具准备】多媒体教学设备【教学过程】一、感性认识阶段——以旧带新,提出课题师:在本节课之前,我们研究过直线的各种方

3、程,建立了二元一次方程与直线的对应关系:在平面直角坐标系中,任何一条直线都可以用一个二元一次方程表示,同时任何一个二元一次方程也表示着一条直线。下面看一个具体的例子:(出示幻灯片2)幻灯片2画出方程表示的直线借助多媒体让学生直观上深刻体会如下结论:(出示幻灯片3)幻灯片31、直线上的点的坐标都是方程的解;2、以这个方程的解为坐标的点都在直线上。即:直线上所有点的集合与方程的解的集合之间建立了一一对应关系。也即:(出示幻灯片4,引导学生类比、推广并思考相关问题)19/7幻灯片4类比:推广:即:任意的曲线和二元方程是否都能建立这种对应关系

4、呢?也即:方程的解与曲线C上的点的坐标具备怎样的关系就能用方程表示曲线C,同时曲线C也表示方程?为什么要具备这些条件?师:以上问题就是本节课研究的内容:曲线和方程(板书课题)。二、分化本质属性阶段——运用反例揭示内涵师:刚才的讨论中,有的同学提到了应具备关系:“曲线上的点的坐标都是方程的解”;有的同学提到了应具备关系:“以这个方程的解为坐标的点都是曲线上的点”;还有的同学虽用了不同的提法,但意思不外乎这两个。现在的问题是:上述的两种提法一样吗?它们反映的是不是同一事实?有何区别?究竞用怎样的关系才能把幻灯片4中的曲线和方程的这种对应关

5、系完整的表达出来?为了弄清这些问题,我们来研究下列问题:(出示幻灯片5,让学生回答问题,并加以纠正和总结)19/7幻灯片5用下列方程表示如图所示的曲线C,对吗?为什么?师:方程⑴、⑵、⑶都不是曲线C的方程。第⑴题中曲线C上的点不全是方程的解;例如点A(-2,-2)、B(,)等不符合“曲线上点的坐标都是方程的解”这一结论。第⑵题中,尽管“曲线上点的坐标都是方程的解”,但是以方程的解为坐标的点却不全在曲线上;例如D(2,-2)、E(,)等不符合“以这个方程的解为坐标的点都在曲线上”这一结论。第⑶题中既有以方程的解为坐标的点,如G(-3,3

6、)、H(,)等都不在曲线上,又有曲线C上的点,如M(-3,-3)、N(-1,-1)等的坐标不是方程的解。事实上,⑴、⑵、⑶中各方程所表示的曲线应该是如图所示的3种情况。(出示幻灯片6)幻灯片619/7师:以上我们观察分析了幻灯片3、5中的问题,发现幻灯片3中的问题完整地用方程表示曲线,用曲线表示方程;而幻灯片5中的问题不能完整地用方程表示曲线,用曲线表示方程。如果我们把完整地用方程表示曲线和用曲线表示方程看成“曲线的方程”和“方程的曲线”的话,那么就可以给“曲线的方程”和“方程的曲线”下定义了。三、概括形成定义阶段——讨论归纳给出定义

7、师:在下定义时,针对幻灯片5中的第⑴个问题“曲线上没有其坐标不是方程的解的点”应作何规定?生:“曲线上的点的坐标都是这个方程的解”。师:针对幻灯片5中的第⑵个问题“以方程的解为坐标的点不在曲线上”应作何规定?生:“以方程的解为坐标的点都有是曲线上的点”。这样,我们可以对“曲线的方程”和“方程的曲线”下这样的定义:(出示幻灯片7)幻灯片7一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程的实数解建立了如下的关系:⑴曲线上的点的坐标都是这个方程的解;⑵以这个方程的解为坐标的点都是曲线上的点,那么,这个方程叫做曲线的方程;这条曲线叫做

8、方程的曲线(图形)。四、定义强化理解阶段——多种表征、深化内涵师:大家熟知,曲线可以看作是由点组成的集合,记作C;一个二元方程的解可以作为点的坐标,因此二元方程的解集也描述了一个点集,记作F。请大家思考:如何用集合C和F

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。